八年级数学说课稿

上传人:Wo****A 文档编号:26143430 上传时间:2021-08-06 格式:DOC 页数:15 大小:23.50KB
返回 下载 相关 举报
八年级数学说课稿_第1页
第1页 / 共15页
八年级数学说课稿_第2页
第2页 / 共15页
八年级数学说课稿_第3页
第3页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
八年级数学说课稿八年级数学说课稿(一)一、 教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。(二)根据课程标准,本课的教学目标是:1、 能说出勾股定理的内容。2、 会初步运用勾股定理进行简单的计算和实际运用。3、 在探索勾股定理的过程中,让学生经历观察猜想归纳验证的数学思想,并体会数形结合和特殊到一般的思想方法。4、 通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分。学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。三、 教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是已知一直角三角形的两边,如何求第三边? 的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个数学化的过程。(二)实验操作:1、投影课本图11,图12的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图13,图14,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。1、归纳 通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。2、验证 为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍勾,股,弦的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。(四)问题解决:让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本想一想进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。(五)课堂小结:主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。(六)布置作业:课本P6习题1.1 1,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。四、 设计说明1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。3、关于练习的设计,除两个实际问题和课本习题以外,我准备设计一道开放题,大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。八年级数学说课稿(二)各位老师你们好!今天我要为大家讲的课题是首先,我对本节教材进行一些分析:一、 教材分析(说教材):1. 教材所处的地位和作用:本节内容在全书和章节中的作用是: 是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。2. 教育教学目标:根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:(1)知识目标: (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。3. 重点,难点以及确定依据:下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:二、 教学策略(说教法)1. 教学手段:如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。2. 教学方法及其理论依据:坚持以学生为主体,以教师为主导的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。3. 学情分析:(说学法)(1) 学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散(2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。(3) 动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力最后我来具体谈谈这一堂课的教学过程:4. 教学程序及设想:(1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为猜想继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。(2)由实例得出本课新的知识点(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。(7)板书(8)布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,教学程序:课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分八年级数学说课稿(三)各位老师你们好 ! 今天我要为大家讲的课题是 全等三角形的判定首先 , 我对本节教材进行一些分析 :一、教材分析(说教材):1. 教材所处的地位和作用 :这一节内容是初中数学人教版教材,八年级上册第十一章第二节的内容。在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。本节内容是在本章内容中,占据重要的的地位。以及为其他学科和今后的几何学习打下基础。2. 教育教学目标 :根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:( 1 )知识目标: 对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。能够利用尺规画出全等的三角形,学生具有一定的作图能力。掌握并理解三角形全等判定定理中的 SSS 和 SAS .能够运用 SSS 和 SAS 判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力,( 3 )情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。3. 重点难点:掌握并理解三角形全等的判定定理运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题二、教学策略(说教法)1. 教学手段: 为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。这样学生就更容易理解和掌握定理。在用两个练习巩固知识。2. 教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。3. 学情分析:(说学法)1 、八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。2 、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。3 、学生在在讨论学习中体验学习的快乐。讨论交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。4. 教学程序:( 1 )复习回顾上节课内容:定义:能够完全重合的三角形叫做全等三角形,重合的边叫对应边,重合的角叫对应角性质:全等三角形对应边和对应角相等( 2 )探究 1 :三角形全等的性质让我们知道 AB=A B BC=B C AC=A C A= A B= B C= C ,满足六个条件中这一部分,能确定 ABC A B C ,先让学生画出 ABD ,再让学生在画 A B C 过程中明白,确定一个条件或两个条件下不能确定两个三角形全等,通过适当时间的引导探究得出得出,当 AB=A B BC=B C AC=A C 时,只能画出一个 A B C 满足条件,于是得出定理:三个对应边相等的两个三角形全等,简写成 SSS .( 3 )得出定理,我通过讲解简单的例题,让学生懂得定理 SSS 定理的运用。( 4 )探究 2 :得出:定理两边和它们的夹角对应相等的两个三角形全等,简写成SAS( 5 )通过解决生活实例,讲解三角形全等的运用( 6 )练习 : 在适当的时间过后给出参考答案,并进行简单的讲解。( 7 )小结:通过本节课的学习,你有哪些收获?( 8 )我的板书:我会把复习内容和这节课的定理用红色粉笔标明在左边,中间板书探究和例题的内容,右边板书练习的参考答案。( 9 )布置作业: P15, 第 1 , 3 题,预习 P10-P12 的内容。第 15 页 共 15 页
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 演讲稿件


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!