数值修约规则教材课件

上传人:文**** 文档编号:253206300 上传时间:2024-12-01 格式:PPT 页数:44 大小:187.93KB
返回 下载 相关 举报
数值修约规则教材课件_第1页
第1页 / 共44页
数值修约规则教材课件_第2页
第2页 / 共44页
数值修约规则教材课件_第3页
第3页 / 共44页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,*,*,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,GB8170-87数值修约规则,二OO八年十一月,数值修约,GB8170-87数值修约规则数值修约,1,数值修约,一、数值修约的概念及意义,二、数值修约的基础知识,三、数值修约规则及注意事项,四、数值运算规则,数值修约一、数值修约的概念及意义,2,一、数值修约的概念及意义,测量及测量结果,数值修约的概念及意义,一、数值修约的概念及意义测量及测量结果,3,1.测量、测量结果,(1),测量、测量结果,测量,是以确定量值为目的的一组操作。量值是由一个,数,(值)乘以测量单位所表示的特定量的大小。,测量有间接和直接之分:,直接测量,的结果可直接测到而不必通过函数计算;而,间接测量,的结果需将直接测量的结果代入函数计算才能得到。,1.测量、测量结果(1)测量、测量结果,4,由测量所得的赋予被测量的值称为,测量结果。,例如,,用分析天平称得一个试样的质量为 1.1080g,1.1080g就是一个测量结果。,由测量与测量结果的概念可看出,测量结果可表示如下:,测量结果=,数,(值)单位量值,根据误差公理,测量总是存在误差的,测量结果只能是接近于测量真值的估计值,因而表示测量结果的数(值)是含有误差的数(值),,就是说,表示测量结果的的数值是一个近似值。,由测量所得的赋予被测量的值称为测量结果。,5,(1),数值修约的概念,对某一表示测量结果的数值(拟修约数),根据保留位数的要求,将多余的数字进行取舍,按照一定的规则,选取一个近似数(修约数)来代替原来的数,这一过程称为数值修约。,2.数值修约的概念及意义,(1)数值修约的概念2.数值修约的概念及意义,6,(2),数值修约的意义,a.出于准确表达测量结果的需要。,测量结果大都是通过间接测量得到的,间接测量的结果通常是通过计算得出的,其组成数字往往较多,但具体测量的精度是确定的,就是说表示合理表征测量结果的数字个数应是确定的,最终提供的测量结果应合理反映这一点,故此,通过对计算方法和直接测量得到的数据的分析,得到合理的保留位数,将多余的数字进行取舍以得到合理反映测量精度的测量结果,即进行数值修约就非常必要。另外,即使采用直接测量,有时在提供测量程序要求的但高于实际测量精度的测量结果时也需要进行合理的数值修约。,(2)数值修约的意义,7,b.在进行具体的数值计算前,对参加计算的数值进行修约,可简化计算,降低计算出错的机会。,如:4.789612.13102.4387926=?,若不先进行数值修约就直接计算,繁琐且容易出错。若在计算前先按数值修约规则进行修约,舍去多余参与计算的数值之中没有意义的数字,则计算会简单得多,计算也就不容易出错。,b.在进行具体的数值计算前,对参加计算的数值进行修约,可简化,8,二、数值修约的基础知识,1.有效数字,2 修约间隔,3.修约数位及,确定修约位数的表达方式,二、数值修约的基础知识1.有效数字,9,1.有效数字,1.1有效数字,有效数字是指在分析和测量中所能得到的有实际意义的数字。测量结果是由有效数字组成的(前后定位用的“0”除外)。,我们来看前面的测量结果1.1080g,组成数字1、1、0、8、0都是实际测读到的,它们是表示试样质量大小的,因而都是有实际意义的。,有效数字的前几位都是准确数字,只有,最后一位是可疑数字,。,如前述的1.1080,前几位数字1、1、0、8都是称量读到的准确数字,而最后一位数字0则是在没有刻度的情况下估读出来的,是不准确的或者说可疑的。,1.有效数字 1.1有效数字,10,有效数字是处于表示测量结果的数值的不同数位上。所有有效数字所占有的数位个数称为,有效数字位数,。,例1:数值3.5,有两个有效数字,占有个位、十分位两个数位,因而有效数字位数为两位;3.501有四个有效数字,占有个位、十分位、百分位等四个数位,因而是四位有效数字。,测量结果的数字,其有效位数反映了测量结果的精确度,它直接与测量的精密度有关。这也是有效数字实际意义的体现,是非常重要的体现。,例如前述例子中,若测量结果为1.1080g,则表示测量值的误差在10,-4,量级上,天平的精度为万分之一;若测量结果为1.108g,则表示测量值的误差在10,-3,量级上,天平的精度为千分之一。,有效数字是处于表示测量结果的数值的不同数位上。所有有效数字所,11,2.2 有效数字位数的确定原则,由于有效数字的位数反映了测量结果的精确度,它直接与测量的精密度有关。因此,在科学实验和生产活动中正确记录有效数字,不能多写或少写,多写了不能正确反映测量精度,则该数据不真实,因而也就不可靠;少写损失测量精度度。另外,能够正确判定表示测量结果的数中那些数字是有效数字,确定有效数字位数就显得非常重要。这也是在计量认证过程中,有效数字位数的确定往往成为考核内容之一的原因。,2.2 有效数字位数的确定原则,12,在确定有效数字位数时应遵循下列原则:,(1)数值中数字19都是有效数字。,(2)数字“0”在数值中所处的位置不同,起的作用也不同,可能是有效数字,也可能不是有效数字。判定如下:,1)“0”在数字前,仅起定位作用,不是有效数字。,如,0.0257中,“2”前面的两个“0”均非有效数字。0.123、0.0123、0.00123中“1”前面的“0”也均非有效数字。,在确定有效数字位数时应遵循下列原则:,13,2)数值末尾的“0”属于有效数字。,如0.5000中,“5”后面的三个“0”均为有效数字;0.5000中,“5”后面的一个“0”也是有效数字。,特例,:见第4)条。,3)数值中夹在数字中间的“0”是有效数字。,如数值1.008中的两个“0”是均是有效数字;数值8.01中间的“0”也是有效数字。,2)数值末尾的“0”属于有效数字。,14,4)以“0”结尾的正整数,“0”是不是有效数字,不确定,,应根据测试结果的准确度确定。,如3600,后面的两个“0”如果不指明测量准确度就不能确定是不是有效数字。,测量中遇到这种情况,最好根据实际测试结果的精确度确定有效数字的位数,有效数字用小数表示,把“0”用10的乘方表示。如将3600写成3.610,3,表示此数有两位有效数字;写成3.6010,3,表示此数有三位有效数字;写成3.60010,3,表示此数有四位有效数字。,4)以“0”结尾的正整数,“0”是不是有效数字不确定,应根,15,试看下面各数据的有效数字位数:,1.0008 43383 五位有效数字,0.5000 20.76%四位有效数字,0.0257 154,10,-10,三位有效数字,53 0.0070 二位有效数字,0.02 2,10,-10,一位有效数字,3600 100 有效数字位数不定,试看下面各数据的有效数字位数:,16,2.修约间隔,修约间隔又称修约区间或化整间隔,系确定修约保留位数的一种方式。修约间隔一般以,k,10,n,(,k,=1,2,5;n为整数)的形式表示,将同一k值的修约间隔,简称为,“,k,”,间隔。,修约间隔的数值一经确定,修约值即应为该数值的整数倍。,例1:如指定修约间隔为0.1,修约值即应在0.1的整数倍中选取,相当于将数值修约到一位小数。,例2:如指定修约间隔为100,修约值即应在100的整数倍中选取,相当于将数值修约到“百”数位。,2.修约间隔修约间隔又称修约区间或化整间隔,系确定修约保留位,17,3.修约数位及,确定修约位数的表达方式,修约时拟将拟修约数的哪一位数位后部分按修约规则舍去,则该数位就是,修约数位,。,数值修约时需要先明确修约数位,,确定修约位数的表达方式如下:,(1)指明具体的修约间隔。,如指明将某数按0.2(210,-1,)修约间隔修约、100(110,2,)修约间隔修约等。,(2)指定将拟修约数修约至某数位的0.1、0.2或0.5个单位。,(3)指明按,“,k,”,间隔,将拟修约数修约为几位有效数字,或修约至某数位。这时“1”间隔可不必指明,但“2”间隔和“5”间隔必须指明。,3.修约数位及确定修约位数的表达方式修约时拟将拟修约数的哪一,18,三、数值修约规则,1.GB8170-87数值修约规则,2.通用修约方法,三、数值修约规则1.GB8170-87数值修约规则,19,1.GB8170-87数值修约规则,测量结果的数据处理是测量过程的最后环节,由于测量结果含有测量误差,测量结果的有效位数应保留适宜,太多会使人误认为测量精度很高,同时也会带来计算上的繁琐;太少则会损失测量准确度。测量、计算结果的数值应按数值修约规则(GB8170-87)规定进行修约。,1.GB8170-87数值修约规则测量结果的数据处理是测,20,GB8170-87数值修约规则规定的修约规则如下:,3.1,拟舍弃数字的最左一位数字小于5时,则舍去,即保留的各位数字不变。,例1:将12.1498修约到一位小数,得12.1。,例2:将12.1498修约成两位有效位数,得12。,GB8170-87数值修约规则规定的修约规则如下:,21,3.2,拟舍弃数字的最左一位数字大于5;或者是5,而其后跟有并非全部为0的数字时,则进一,即保留的末位数字加1。,例1:将1268修约到“百”数位,得1310,2,(特定时可写为1300)。,例2:将1268修约成三位有效位数,得12710(特定时可写为1270)。,例3:将10.502修约到个数位,得11。,注:“特定时”的涵义系指修约间隔或有效位数明确时。,3.2 拟舍弃数字的最左一位数字大于5;或者是5,而其后跟有,22,3.3,拟舍弃数字的最左一位数字为5,而右面无数字或皆为0时,若所保留的末位数字为奇数(1,3,5,7,9)则进一,为偶数(2,4,6,8,0)则舍弃。,例1:修约间隔为0.1(或10,-1,),拟修约数 修约值,1.050 1.0,0.350 0.4,3.3 拟舍弃数字的最左一位数字为5,而右面无数字或皆为0时,23,例2:修约间隔为1000(或10,3,),拟修约数 修约值,2500,210,3,(特定时可写为2000),3500,410,3,(特定时可写为4000),例3:将下列数字修约成两位有效位数,拟修约数 修约值,0.0325 0.032,32500 3210,3,(特定时可写为32000),例2:修约间隔为1000(或103),24,3.4,负数修约时,先将它的绝对值按上述3.1-3.3规定进行修约,然后在修约值前面加上负号。,例1:将下列数修约到“十”数位,拟修约数 修约值,-355 -3610,(特定时可写为-360),-325 -3210,(特定时可写为-320),例2:将下列数修约成两位有效位数,拟修约数 修约值,-365 -3610,(特定时可写为-360),-0.0365 -0.036,注:以上4条为修约间隔为“1”时的修约规则。,3.4 负数修约时,先将它的绝对值按上述3.1-3.3规定进,25,5,0.5单位修约与0.2单位修约,必要时,可采用0.5单位修约和0.2单位修约。,5.1,0.5单位修约,将拟修约数乘以2,按指定数位依,3.1-3.4,规则修约,所得数再除以2。,例如:将下列数修约到个数位的0.5单位(或修约间隔为0.5),拟修约数 乘2 2A修约值 A修约值,(A)(2A)(修约间隔为1)(修约间隔为0.5)60.25 120.50 120 60.0,60.38 120.76 121 60.5,-60.75 -121.50 -122 -61.0,5 0.5单位修约与0.2单位修约,26,5.2,0.2单位修约,将拟修约数乘以5,按指定数位依,3.1-3.4,规则修约,所得数值再除以5。,例如:将下列数修约到“百”数位的0.2单位(或修约间隔为20),拟修约数 乘5 5A修约值 A修约值,(A)(5A)(修约间隔为100)(修约间隔为20)830 4150 4200 840,842 4210 4200 840,-930 -4650 -4600 -920,5.2 0.2单位
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > PPT模板库


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!