资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,选修3-1静电场,1.9 带电粒子在电场中的运动,带电粒子在电场中的运动,、动力学方法:,一、带电粒子在电场中的加速,A,B,U,d,E,+,F,v,由牛顿第二定律:,由运动学公式:,初速度,不为零,呢?,只适用于,匀强电场,2、动能定理:,A,B,U,d,E,+,v,由动能定理:,也适用于,非匀强电场,一、带电粒子在电场中的加速,1、,下列粒子由静止经加速电压为U的电场加速后,哪种粒子动能最大(),哪种粒子速度最大(),A、质子 B、电子C、氘核 D、氦核,例与练,与,电量,成正比,与,比荷平方根,成正比,2、,如图所示,M、N是在真空中竖直放置的两块平行金属板,质量为m、电量为+q的带电粒子,以,极小的初速度,由小孔进入电场,当M、N间电压为U时,粒子到达N板的速度为,v,,如果要使这个带电粒子到达N板的速度为2,v,,则下述方法能满足要求的是()A、使M、N间电压增加为2U B、使M、N间电压增加为4U C、使M、N间电压不变,距离减半 D、使M、N间电压不变,距离加倍,例与练,M,N,U,d,+,v,与,电压平方根,成正比,3、,如图M、N是在真空中竖直放置的两块平行金属板,质量为m电量为-q的带电粒子,以初速度V,0,由小孔进入电场,当M、N间电压为U时,粒子刚好能到达N板,如果要使这个带电粒子能够到达M、N两板间距的1/2处返回,则下述方法能满足要求的是()A、使初速度减半B、使M、N间电压加倍C、使M、N间电压提高4倍D、使初速度和M、N间电压都加倍,例与练,M,N,U,d,-,v,0,4、,如图所示的电场中有A、B两点,A、B的电势差U,AB,100V,一个质量为m=,2.010,-12,kg、,电量为q=,-5.010,-8,C,的带电粒子,以初速度,v,0,=,3.010,3,m/s,由A点运动到B点,求粒子到达B点时的速率。(不计粒子重力),例与练,A,-,v,0,B,q为,负,5、,如图所示,A、B为平行金属板电容器,两板间的距离为d,在A板的缺口的正上方距离为h的P处,有一静止的、质量为m、带电量为+q的液滴由静止开始自由落下,若要使液滴不落在B板上,两板间场强至少为多大?两板间的电压U至少为多大?,例与练,mg,mg,qE,对全过程由动能定理:,二、带电粒子在匀强电场中的偏转,l,d,+,-,+,U,v,0,q、m,二、带电粒子在匀强电场中的偏转,l,d,+,-,+,U,v,0,q、m,F,+,v,v,0,v,y,y,偏转角,侧移,二、带电粒子在匀强电场中的偏转,类平抛运动,与粒子比荷,q/m,成正比,与粒子初速度,v,0,平方成反比,与电场的属性,U、l、d,有关,二、带电粒子在匀强电场中的偏转,与粒子比荷,q/m,成正比,与粒子初速度,v,0,平方成反比,与电场的属性,U、l、d,有关,类平抛运动,6、,质量为m、带电量为q的粒子以初速度,v,从中线垂直进入偏转电场,刚好离开电场,它在离开电场后偏转角正切为0.5,则下列说法中正确的是(),A、如果偏转电场的电压为原来的一半,则粒子离开电场后的偏转角正切为0.25,B、如果带电粒子的比荷为原来的一半,则粒子离开电场后的偏转角正切为0.25,C、如果带电粒子的初速度为原来的2倍,则粒子离开电场后的偏转角正切为0.25,D、如果带电粒子的初动能为原来的2倍,则粒子离开电场后的偏转角正切为0.25,例与练,偏转角正切与,比荷成正比,偏转角正切与,初动能成反比,偏转角正切与,电压成正比,7、质子(质量为m、电量为e)和二价氦离子(质量为4m、电量为2e)以相同的,初动能,垂直射入同一偏转电场中,离开电场后,它们的偏转角正切之比为,,侧移之比为,。,例与练,与,电量,成正比,与,电量,成正比,8、三个电子在同一地点沿同一直线垂直飞入偏转电场,如图所示。则由此可判断(),A、b和c同时飞离电场,B、在b飞离电场的瞬间,,a,刚好打在下极板上,C、进入电场时,c速度最大,,a,速度最小,D、c的动能增量最小,,a,和b的动能增量一样大,例与练,析与解,9、,如图,电子在电势差为U,1,的加速电场中由静止开始加速,然后射入电势差为U,2,的两块平行极板间的电场中,入射方向跟极板平行。整个装置处在真空中,重力可忽略。在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角变大的是,(),A、U,1,变大、U,2,变大 B、U,1,变小、U,2,变大,C、U,1,变大、U,2,变小 D、U,1,变小、U,2,变小,例与练,析与解,对加速过程由动能定理:,对偏转过程由偏转角正切公式:,与粒子的,电量q、质量m,无关,10、如图所示,二价氦离子和质子的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们(),A、侧移相同,B、偏转角相同,C、到达屏上同一点,D、到达屏上不同点,例与练,与粒子的,电量q、质量m,无关,11、试证明:带电粒子垂直进入偏转电场,离开电场时就好象是从初速度所在直线的,中点沿直线,离开电场的。,例与练,x,12、如图所示,有一电子(电量为e、质量为m)经电压U,0,加速后,沿平行金属板A、B中心线进入两板,A、B板间距为d、长度为L,A、B板间电压为U,屏CD足够大,距离A、B板右边缘2L,AB板的中心线过屏CD的中心且与屏CD垂直。试求电子束打在屏上的位置到屏中心间的距离。,例与练,析与解,电子离开电场,就好象从中点沿直线离开的:,对加速过程由动能定理:,13、,质量为110,-25,kg、电量为110,-16,C的带电粒子以210,6,m/s速度从水平放置的平行金属板A、B中央沿水平方向飞入板间,如图所示。已知板长L10cm,间距d2cm,当AB间电压在,范围内时,此带电粒子能从板间飞出。,例与练,v,0,+,-,v,0,+,-,析与解,对偏转过程由偏转角正切公式:,或对偏转过程由侧移公式:,14、初速度为,210,7,m/s的,电子沿平行金属板间的中心线射入板中,板长为,30cm,,相距为,4cm,,在两板间加上如图所示的,正弦交变电压,。已知电子的质量为9,10,-31,Kg,,电量为1.6,10,-19,C,,不计电子重力,求:要使所有的电子都能离开电场,图中电压的最大值,U,0,需满足什么条件?,例与练,可认为在,t时间内,电场,不变,设电子在两板间的运动时间为,t,设电子在偏转电压为U,0,时进入板间,析与解,带电粒子在,交变电场,中的运动,在两个相互平行的金属板间加,交变电压,时,在两板间便可获得,交变电场,。此类电场从空间看是匀强电场,即同一时刻,电场中各个位置处电场强度的大小、方向都相同;从时间上看是变化的,即电场强度的大小、方向都可随时间变化。,研究带电粒子在这种交变电场中的运动,关键是根据电场变化的特点,正确地判断粒子的运动情况。,当带电粒子通过电场的时间远远小于电场变化的周期时,可认为电场强度的大小、方向都不变。,小 结,三、示波管的原理,产生,高速,飞行的,电子束,待显示,的电压信号,锯齿形,扫描电压,使电子沿,Y方向,偏移,使电子沿,x方向,偏移,三、示波管的原理,1、如果在电极XX之间不加电压,而在YY之间加,不变电压,,使Y的电势比Y高,电子将打在荧光屏的什么位置?,电子沿,Y,方向,向上,偏移,三、示波管的原理,1、如果在电极XX之间不加电压,而在YY之间加,不变电压,,使Y的电势比Y高,电子将打在荧光屏的什么位置?,电子沿,Y,方向,向下,偏移,三、示波管的原理,1、如果在电极XX之间不加电压,但在YY之间加,不变电压,,使Y的电势比Y高,电子将打在荧光屏的什么位置?,如果在电极 YY之间不加电压,但在XX之间加,不变电压,,使X的电势比X高,电子将打在荧光屏的什么位置?,电子沿,X,方向,向里,偏移,三、示波管的原理,1、如果在电极XX之间不加电压,但在YY之间加,不变电压,,使Y的电势比Y高,电子将打在荧光屏的什么位置?,如果在电极 YY之间不加电压,但在XX之间加,不变电压,,使X的电势比X高,电子将打在荧光屏的什么位置?,电子沿,X,方向,向外,偏移,三、示波管的原理,2、如果在电极XX之间不加电压,但在YY之间加如图所示的,交变电压,,在荧光屏上会看到什么图形?,0tt,1,电子沿,Y,方向,向上,偏移,三、示波管的原理,2、如果在电极XX之间不加电压,但在YY之间加如图所示的,交变电压,,在荧光屏上会看到什么图形?,t,1,tt,2,电子沿,Y,方向,向下,偏移,三、示波管的原理,3、如果在YY之间加如图所示的,交变电压,,同时在XX之间加,不变电压,,使X的电势比X高,,,在荧光屏上会看到什么图形?,0tt,1,电子沿,Y,方向,向上,偏,沿,X,方向,向里,偏,三、示波管的原理,3、如果在YY之间加如图所示的,交变电压,,同时在XX之间加,不变电压,,使X的电势比X高,在荧光屏上会看到什么图形?,t,1,tt,2,电子沿,Y,方向,向下,偏,沿,X,方向,向里,偏,三、示波管的原理,3、如果在YY之间加如图所示的,交变电压,,同时在XX之间加,不变电压,,使X的电势比X高,在荧光屏上会看到什么图形?,电子沿,Y,方向,向上向下,偏,沿,X,方向,向外,偏,设电子进入,AB,板时的初速度为,v,0,设电子在偏转电压为U,0,时进入,AB,板间,析与解,
展开阅读全文