资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,7.2 风险型决策方法,许多地理问题,常常需要在自然、经济、技术、市场等各种因素共存的环境下做出决策。而在这些因素中,有许多是决策者所不能控制和完全了解的。对于这样一类地理决策问题的研究,风险型决策方法是必不可少的方法。,对于风险型决策问题,其常用的决策方法主要有最大可能法、期望值法、灵敏度分析法、效用分析法等。,在对实际问题进行决策时,可以采用各种不同方法分别进行计算、比较,然后通过综合分析,选择最佳的决策方案,这样,往往能够减少决策的风险性。,风险型决策方法,最大可能法,期望值决策法及其矩阵运算,树型决策法,灵敏度分析法,效用分析法,一、最大可能法,(一)最大可能法 在解决风险型决策问题时,选择一个概率最大的自然状态,把它看成是将要发生的唯一确定的状态,而把其他概率较小的自然状态忽略,这样就可以通过比较各行动方案在那个最大概率的自然状态下的益损值进行决策。这种决策方法就是最大可能法。,应用条件,在一组自然状态中,某一自然状态出现的概率比其他自然状态出现的概率大很多,而且各行动方案在各自然状态下的益损值差别不是很大。,实质,在将大概率事件看成必然事件,小概率事件看成不可能事件的假设条件下,将风险型决策问题转化成确定型决策问题的一种决策方法。,例1:用最大可能法对第7章第1节中的例1所描述的风险型决策问题求解。,表7.1.,1,每一种天气类型发生的概率及,种植各种农作物的收益,解,:,由表可知,极旱年、旱年、平年、湿润年、极湿年5种自然状态发生的概率分别为0.1、0.2、0.4、0.2、0.1,显然,平年状态的概率最大。按照最大可能法,可以将平年状态的发生看成是必然事件。而在平年状态下,各行动方案的收益分别是:水稻为180千元/,hm,2,,,小麦为170千元/,hm,2,,,大豆为230千元/,hm,2,,,燕麦为170千元/,hm,2,,,显然,大豆的收益最大。所以,该农场应该选择种植大豆为最佳决策方案。,二、,期望值决策法及其矩阵运算,期望值决策法,对于一个离散型的随机变量,X,,它的数学期望为,式中:,x,i,(,n,=1,2,,n,)为随机变量,x,的各个取值;,P,i,为,x,=,x,i,的概率,即,P,i,=,P,(,x,i,)。 随机变量,x,的期望值代表了它在概率意义下的平均值。,期望值决策法,就是计算各方案的期望益损值,,并以它为依据,选择平均收益最大或者平均损失最小,的方案作为最佳决策方案。,期望值决策法的计算、分析过程,把每一个行动方案看成是一个随机变量,而它在不同自然状态下的益损值就是该随机变量的取值;,把每一个行动方案在不同的自然状态下的益损值与其对应的状态概率相乘,再相加,计算该行动方案在概率意义下的平均益损值;,选择平均收益最大或平均损失最小的行动方案作为最佳决策方案。,例2:试用期望值决策法对表7.1.1所描述的风险型决策问题求解。,表7.1.1 每一种天气类型发生的概率及,种植各种农作物的收益,解:,(1),方案:水稻,B,1,,,小麦,B,2,,,大豆,B,3,,,燕麦,B,4,;,状态:极旱年,1,、旱年,2,、平年,3,、湿润年,4,、极湿年,5,;,方案,B,i,在状态,j,下的收益值,a,ij,看做该随机变量的取值。,(2),计算各个行动方案的期望收益值,E,(,B,1,),=,1000.1+1260.2+1800.4+2000.2+2200.1=169.2(,千元/,hm,2,),E,(,B,2,),=,2500.1+2100.2+1700.4+1200.2+800.1=167(,千元/,hm,2,),E,(,B,3,),=,1200.1+1700.2+2300.4+1700.2+1100.1=183(,千元/,hm,2,),E,(,B,4,),=,1180.1+1300.2+1700.4+1900.2+2100.1=164.8(,千元/,hm,2,),表7.2.1 风险型决策问题的期望值计算,(3),选择最佳决策方案。 因为,E,(,B,3,)max,E,(,B,i,)183(,千元/,hm,2,),所以,种植大豆为最佳决策方案。,期望值决策法的矩阵运算,假设某风险型决策问题,有,m,个方案,B,1,,,B,2,,,B,m,;,有,n,个状态,1,,,2,,,n,,,各状态的概率分别为,P,1,P,2,P,n,。,如果在状态,j,下采取方案,B,i,的益损值为,a,ij,(,i,=1,2,m,;,j,=1,2,n,),则方案,B,i,的期望益损值为,如果引入下述向量, ,及矩阵,则矩阵运算形式为,例2:试用期望值决策法对第7章第,1,节中的例1所描述的风险型决策问题求解。,在上例中,显然,由于,E,(,B,3,)=max,E,(,B,i,)=183(,千元/,hm,2,),,所以该农场应该选择种植大豆为最佳决策方案。,运用矩阵运算法则,经乘积运算可得,1,.,0,2,.,0,4,.,0,2,.,0,1,.,0,三、树型决策法,树型决策法,是研究风险型决策问题经常采取的决策方法。,决策树,是树型决策法的基本结构模型,它由决策点、方案分枝、状态结点、概率分枝和结果点等要素构成 。,决策树结构示意图,在图中,小方框代表决策点,由决策点引出的各分支线段代表各个方案,称之为方案分枝;方案分枝末端的圆圈叫做状态结点;由状态结点引出的各分枝线段代表各种状态发生的概率,叫做概率分枝;概率分枝末端的小三角代表结果点。,树型决策法的决策原则,树型决策法的决策依据是各个方案的期望益损值,决策的原则一般是选择期望收益值最大或期望损失(成本或代价)值最小的方案作为最佳决策方案。,树型决策法进行风险型决策分析的逻辑顺序,树根树杆树枝,最后向树梢逐渐展开。,各个方案的期望值的计算过程恰好与分析问题的逻辑顺序相反,它一般是从每一个树梢开始,经树枝、树杆、逐渐向树根进行。,(1),画出决策树,。把一个具体的决策问题,由决策点逐渐展开为方案分支、状态结点,以及概率分支、结果点等。,(2),计算期望益损值,。在决策树中,由树梢开始,经树枝、树杆、逐渐向树根,依次计算各个方案的期望益损值。,(3),剪枝,。将各个方案的期望益损值分别标注在其对应的状态结点上,进行比较优选,将优胜者填入决策点,用|号剪掉舍弃方案,保留被选取的最优方案。,用树型决策法的一般步骤,(1)所谓单级风险型决策,是指在整个决策过程中,只需要做出一次决策方案的选择,就可以完成决策任务。实例见例3。,(2)所谓多级风险型决策,是指在整个决策过程中,需要做出多次决策方案的选择,才能完成决策任务。实例见例4。,单级风险型决策与多级风险型决策,例3:,某企业为了生产一种新产品,有,3,个方案可供决策者选择:一是改造原有生产线;二是从国外引进生产线;三是与国内其他企业协作生产。该种产品的市场需求状况大致有高、中、低,3,种可能,据估计,其发生的概率分别是0.3、0.5、0.2。表9.2.2给出了各种市场需求状况下每一个方案的效益值。试问该企业究竟应该选择哪一种方案?,表7.2.2 某企业在采用不同方案生产某种新产品的效益,值,解:该问题是一个典型的单级风险型决策问题,现在用树型决策法求解这一问题。,(1),画出该问题的决策树 (图7.2.2所示)。,图7.2.2 单级风险型决策问题的决策树,(2),计算各方案的期望效益值。,状态结点,V,1,的期望效益值为,EV,1,2000.3+1000.5+200.2=114(,万元),状态结点,V,2,的期望效益值为,EV,2,2200.3+1200.5+600.2138(,万元),状态结点,V,3,的期望效益值为,EV,3,1800.3+1000.5+800.2120(,万元),(3),剪枝。因为,EV,2,EV,1,EV,2,EV,3,,,所以,剪掉状态结点,V,1,和,V,3,所对应的方案分枝,保留状态结点,V,2,所对应的方案分枝。即该问题的最优决策方案应该是从国外引进生产线。,例4,:,某企业,由于生产工艺较落后,产品成本高,在价格保持中等水平的情况下无利可图,在价格低落时就要亏损,只有在价格较高时才能盈利。鉴于这种情况,企业管理者有意改进其生产工艺,即用新的工艺代替原来旧的生产工艺。,现在,取得新的生产工艺有两种途径:一是自行研制,但其成功的概率是0.6;二是购买专利,估计谈判成功的概率是0.8。,如果自行研制成功或者谈判成功,生产规模都将考虑两种方案:一是产量不变;二是增加产量。,如果自行研制或谈判都失败,则仍采用原工艺进行生产,并保持原生产规模不变。,据市场预测,该企业的产品今后跌价的概率是0.1,价格保持中等水平的概率是0.5,涨价的概率是0.4。,表9.2.3给出了各方案在不同价格状态下的效益值。试问,对于这一问题,该企业应该如何决策?,解:这个问题是一个典型的多级(二级)风险型决策问题,下面仍然用树型决策法解决该问题。,(1),画出决策树(图7.2.3)。,表7.2.3 某企业各种生产方案下的效益值(单位:万元),方,案,效,益,价格状态(概率),(2),计算期望效益值,并进行剪枝:,状态结点,V,7,的期望效益值为,EV,7,(-200)0.1+500.5+1500.465(,万元); 状态结点,V,8,的期望效益值为,EV,8,(-300)0.1+500.5+2500.495(,万元)。,由于,EV,8,EV,7,,,所以,剪掉状态结点,V,7,对应的方案分枝,并将,EV,8,的数据填入决策点,V,4,,,即令,EV,4,EV,8,95(,万元)。,状态结点,V,3,的期望效益值为,EV,3,(-100)0.1+00.5+1000.430(,万元)。,所以,状态结点,V,1,的期望效益值为,EV,1,=300.2+950.8=82(,万元)。,状态结点,V,9,的期望效益值为,EV,9,(-200)0.1+00.5+2000.460(,万元);,状态结点,V,10,的期望效益值为,EV,10,(-300)0.1+(-250)0.5+6000.485(,万元)。 由于,EV,10,EV,9,,,所以,剪掉状态结点,V,9,对应的方案分枝,将,EV,10,的数据填入决策点,V,5,。,即令,EV,5,EV,10,85(,万元)。,状态结点,V,6,的期望效益值为,EV,6,(-100)0.1+00.5+1000.430(,万元),,所以,状态结点,V,2,期望效益值为,EV,2,=300.4+850.6=63(,万元)。,由于,EV,1,EV,2,所以,剪掉状态结点,V,2,对应的方案分枝将,EV,1,的数据填入决策点,EV,,,即令,EV,EV,1,82(,万元)。,综合以上期望效益值计算与剪枝过程可知,该问题的决策方案应该是:首先采用购买专利方案进行工艺改造,当购买专利改造工艺成功后,再采用扩大生产规模(即增加产量)方案进行生产。,四、灵敏度分析法,对于风险型决策问题,其各个方案的期望益损值是在对状态概率预测的基础上求得的。由于状态概率的预测会受到许多不可控因素的影响,因而基于状态概率预测结果的期望益损值也不可能同实际完全一致,会产生一定的误差。,这样,就必须对可能产生的数据变动是否会影响最佳决策方案的选择进行分析,这就是,灵敏度分析,。,灵敏度分析,例5:某企业拟扩大产品产量,现有两种方案可供选择:一是新建生产线;二是改造生产线。该企业管理者经过研究,运用期望值决策法编制出决策分析表(表9.2.4)。由于市场情况极其复杂,它受许多不可控因素的影响,因而销售状态的概率可能会发生变化。试针对这种情况,进行灵敏度分析。,表7.2.4 某企业扩大产品产量决策分析表,解,:(1),以最大期望效益值为准则确定最佳方案,。,E,(,A,1,)max,E,(,A,1,),E,(,A,2,)=290,万元,所以,新建生产线(,B,1,),为最佳方案。,(2),灵敏度分析,。,当考虑市场销售状态中适销的概率由0.7变为0.3时,则两个方案的期望效益值的变化为,E,(,B,1,)10,万元,,E,(,B,2,)20,万元。,所以,在0.7与0.3之间一定存在一点,P,,,当适销状态的概率等于,P,时,新建生产线方案与改造原生产线方案的期望效益值相等。,P,称为转移概率,500,P,+(1-,P,)(-200)=300,P,+(1-,P,)(-100),P,0.33,所以,当,P,0.33,时,新建生产线(,B,1,),为最佳方案; 当,P,0.33,时,改造原生产线方案(,B,2,),为最佳方案。,五、效用分析法,决策是由决策者自己做出的,决策者个人的主观因素不能不对决策过程产生影响。如果完全采用期望益损值作为决策准则,就会把决策过程变成机械地计算期望益损值的过程,而排除了决策者的作用,这当然是不科学的。,面对同一决策问题,不同的决策者对相同的利益和损失的反应不同。即便是对于相同的决策者,在不同的时期和情况下,这种反应也不相同。这就是决策者的主观价值概念,即效用值概念。,画出效用曲线,将效用理论应用于决策过程的主要步骤,:,以益损值为横坐标,以效用值为纵坐标。规定:益损值的最大效用值为1,益损值的最小效用值为0,其余数值可以采用向决策者逐一提问的方式确定。,曲线,A,是保守型决策者的效用曲线,不求大利,尽量避免风险,谨慎小心;曲线,C,是风险型决策者的效用曲线,谋求大利,不惧风险;曲线,B,是中间型决策者的效用曲线。,按效用值进行决策,找出每一个行动方案在不同状态下的益损值的效用值;,计算各个行动方案的期望效用值;,选择期望效用值最大的方案作为最佳决策方案。,可见,效用分析法对于方案的选择,不但考虑了决策问题的客观情况,还考虑了决策者的主观价值,即效用值,是一种更符合实际的决策分析方法。效用函数(曲线),是对决策问题进行效用分析的关键。,讲 解 完 毕,谢谢大家,
展开阅读全文