资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,空间向量,及其运算,复习回顾:,平面向量,1、,定义,:,既有大小又有方向的量。,几何表示法,:用有向线段表示,字母表示法,:,用小写字母表示,或者用表示向量的,有向线段的起点和终点字母表示。,相等向量,:长度相等且方向相同的向量,A,B,C,D,平面向量的加减法与数乘运算,向量的加法:,a,b,a,+,b,平行四边形法则,a,b,a,+,b,三角形法则,向量的减法,a,b,a,-,b,三角形法则,向量的数乘,a,k,a,(,k,0),k,a,(,k0),k,a,(,k,0),k,a,(,k,0),k,空间向量的数乘,空间向量的加减法,a,b,a,b,O,A,B,b,因此凡是涉及空间任意,两个,向量的问题,平面向量中有,关结论仍适用于它们。,思考:空间任意两个向量经过平移一定共面?,平面向量,概念,加法,减法,数乘,运算,运,算,律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或,平行四边形法则,空间向量及其加减与数乘运算,空间向量,具有大小和方向的量,数乘:,ka,k,为正数,负数,零,加法交换律,加法结合律,数乘分配律,加法交换律,数乘分配律,加法:三角形法则或,平行四边形法则,减法:三角形法则,数乘:,ka,k,为正数,负数,零,加法结合律,成立吗?,a,b,c,O,A,B,C,a,b,+,a,b,c,O,A,B,C,b,c,+,(空间向量),a,b,+,c,+,(,),a,b,+,c,+,(,),(,a,+,b,)+,c,=,a,+(,b,+,c,),向量加法结合律:,空间中,推广:,(1)首尾相接的若干向量之和,等于由起始,向量的起点指向末尾向量的终点的向量;,(2)首尾相接的若干向量若构成一个封闭图,形,则它们的和为零向量。,也叫封口向量,平面向量,概念,加法,减法,数乘,运算,运,算,律,定义,表示法,相等向量,减法:三角形法则,加法:三角形法则或,平行四边形法则,空间向量,具有大小和方向的量,数乘:ka,k为正数,负数,零,加法交换律,加法结合律,数乘分配律,小结,加法交换律,数乘分配律,加法结合律,类比思想 数形结合思想,数乘:ka,k为正数,负数,零,例如:,定义:,我们知道平面向量还有数乘运算.,类似地,同样可以定义空间向量的数乘运算,其运算律是否也与平面向量完全相同呢?,显然,空间向量的数乘运算满足分配律及结合律,例1:已知平行六面体,ABCD-A,1,B,1,C,1,D,1,,,化简下列向量,表达式,并标出化简结果的向量。(如图),A,B,C,D,A,1,B,1,C,1,D,1,A,B,C,D,A,B,C,D,A,1,B,1,C,1,D,1,A,B,C,D,a,平行六面体:平行四边形,ABCD,平移向量,到,A,1,B,1,C,1,D,1,的轨迹所形成的几何体.,a,记做,ABCD-A,1,B,1,C,1,D,1,例1:已知平行六面体,ABCD-A,1,B,1,C,1,D,1,,,化简下列向量,表达式,并标出化简结果的向量。(如图),A,B,C,D,A,1,B,1,C,1,D,1,G,M,始点相同的三个不共面向量之和,等于以这三个向量,为棱的平行六面体的以公共始点为始点的对角线所示向量,F,1,F,2,F,1,=10,N,F,2,=15,N,F,3,=15,N,F,3,例2:已知平行六面体,ABCD-A,1,B,1,C,1,D,1,,,求满足下列各式的x的值。,A,B,C,D,A,1,B,1,C,1,D,1,例2:已知平行六面体,ABCD-A,1,B,1,C,1,D,1,,,求满足下列各式的x的值。,A,B,C,D,A,1,B,1,C,1,D,1,例2:已知平行六面体,ABCD-A,1,B,1,C,1,D,1,,,求满足下列各式的x的值。,A,B,C,D,A,1,B,1,C,1,D,1,例2:已知平行六面体,ABCD-A,1,B,1,C,1,D,1,,,求满足下列各式的x的值。,A,B,C,D,A,1,B,1,C,1,D,1,A,B,M,C,G,D,练习1,在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简,A,B,M,C,G,D,(2)原式,练习1,在空间四边形ABCD中,点M、G分别是BC、CD边的中点,化简,A,B,C,D,D,C,B,A,练习2,在立方体AC,1,中,点E是面AC,的中心,求下列各式中的x,y.,E,A,B,C,D,D,C,B,A,练习2,E,在立方体AC,1,中,点E是面AC,的中心,求下列各式中的x,y.,A,B,C,D,D,C,B,A,练习2,E,在立方体AC,1,中,点E是面AC,的中心,求下列各式中的x,y.,作业,A,M,C,G,D,B,思考题:考虑空间三个向量共面的充要条件.,a,b,a,b,O,A,B,b,结论:空间任意两个向量都是共面向量,所以它们可用,同一平面内的两条有向线段表示。,因此凡是涉及空间任意两个向量的问题,平面向量中有,关结论仍适用于它们。,思考:它们确定的平面是否唯一?,思考:空间任意两个向量是否可能异面?,再见,
展开阅读全文