资源描述
第,2,课时 根据方差做决策,R,八年级数学下册,复习导入,回顾,方差,的计算公式,请举例说明方差的意义,方差,越大,,数据的波动,越大;,方差,越小,,数据的波动,越小,方差,的适用条件:,当两组数据的平均数,相等或相近,时,才利用方差来判断它们的波动情况,学习目标,学习重、难点,1.,进一步认识方差的作用,.,2.,学会运用方差分析数据进行优化选择和决策,.,重点:,方差的计算,.,难点:,运用方差大小与数据波动程度的关系,解决产品挑选等问题,.,推进新课,知识点,1,用样本方差估计总体方差,例,2,某快餐公司的香辣鸡腿很受消费者欢迎,为了保持公司信誉,公司严把鸡腿的进货质量,现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近,快餐公司决定通过检查鸡腿的重量来确定选购哪家公司的鸡腿,检查人员从两家的鸡腿中各抽取,15,个鸡腿,记录它们的质量如下(单位:,g,):,甲,74,74,75,74,76,73,76,73,76,75,78,77,74,72,73,乙,75,73,79,72,76,71,73,72,78,74,77,78,80,71,75,根据上面的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?,解:,甲、乙两家抽取的样本数据的平均数分别是,样本平均数相同,估计这批鸡腿的平均质量相近,样本数据的方差分别是,由可知,两家加工厂的鸡腿质量大致相等;由 可知,甲加工厂的鸡腿质量更稳定,大小更均匀因此,快餐公司应该选购甲加工厂生产的鸡腿,用样本方差来估计总体方差是统计的基本思想,就像用样本的平均数估计总体的平均数一样,考察总体方差时如果所要考察的总体包含很多个体,或者考察本身带有破坏性,实际中常常用样本方差,来估计总体方差,.,练习,某跳远队准备从甲、乙两名运动员中选取成绩稳定的一名参加比赛,.,下表是这两名运动员,10,次测验成绩(单位:,m,):,甲,5.85,5.93,6.07,5.91,5.99,6.13,5.98,6.05,6.00,6.19,乙,6.11,6.08,5.83,5.92,5.84,5.81,6.18,6.17,5.85,6.21,你认为应该选择哪名运动员参赛?为什么?,解:,甲、乙测验成绩的平均数分别是,方差分别是,s,2,甲,乙,2.,从甲、乙两种农作物中各抽取,10,株苗,分别测得它的苗高如下:,(,单位:,cm),甲:9,10,11,12,7,13,10,8,12,8,乙:8,13,12,11,10,12,7,7,9,11,问:(1)哪种农作物的苗长得比较高?,(2)哪种农作物的苗长得比较整齐?,解:,(1),,,两种农作物的苗长得一样高,(2),s,2,甲,=3.6,,,s,2,乙,=4.2,,,s,2,甲,s,2,乙,乙种水果销售量比较稳定,课堂小结,(,1,)在解决实际问题时,方差的作用是什么?,反映数据的波动大小,方差,越大,数据的,波动越大,;,方差,越小,,数据,的,波动越小,,可用样本方差估计总体方差,(,2,),运用方差解决实际问题的一般步骤是怎样的?,先计算样本数据平均数,当两组数据的平均数,相等或相近,时,再利用样本方差来估计总体数据的,波动情况,某中学开展“唱红歌”比赛活动,八年级,(1),、,(2),班根据初赛成绩各选出,5,名选手参加复赛,两个班各选出的,5,名选手的复赛成绩,(,满分,100,分,),如下图所示:,(1),根据左图填写右表:,(2)结合两班复赛成绩的平均数和中位数,,班复赛成绩较好;,(3)结合两班复赛成绩的方差,,班复赛成绩较好;,(4)结合两班复赛成绩的众数,,班复赛成绩较好.,八(1),八(1),八(2),1.,从课后习题中选取;,2.,完成练习册本课时的习题。,课后作业,教学反思,方差的特点是与生产及日常生活中的实际问题紧密联系的,对学生统计观念的形成有着举足轻重的作用,.,本节课创设了一个很好的问题情境和统计知识的背景,当学生融入到具体情境中后,就会思考如何对实际问题做出决策,.,在学生探索过程中,辅以小组讨论,始终以学生的学习过程为主体,在学生独立思考和全班交流的基础上,有针对性地进行引导,培养学生的自主意识和探索精神,.,习题,20.2,1.,甲、乙两台机床同时生产一种零件,.,在,10,天中,两台机床每天出次品的数量如下表,.,甲,0,1,0,2,2,0,3,1,2,4,乙,2,3,1,1,0,2,1,1,0,1,(1),分别计算两组数据的平均数和方差;,(2),从计算结果看,在,10,天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?,2.,甲、乙两台包装机同时包装糖果,.,从中各抽出,10,袋,测得它们的实际质量(单位:,g,)如下表,.,甲,501,506,508,508,497,508,506,508,507,499,乙,505,507,505,498,505,506,505,505,506,506,(1),分别计算两组数据的平均数和方差;,(2),哪台包装机包装的,10,袋糖果的质量比较稳定?,3.,为了考察甲、乙两种小麦的长势,分别从中随机抽取,10,株麦苗,测得苗高(单位:,cm,)如下表,.,甲,12,13,14,15,10,16,13,11,15,11,乙,11,16,17,14,13,19,6,8,10,16,(1),分别计算两种小麦的平均苗高;,(2),哪种小麦的长势比较整齐?,4.,在体操比赛中,往往在所有裁判给出的分数中,去掉一个最高分和一个最低分,然后计算余下分数的平均分,.6,个,B,组裁判对某一运动员的打分数据(动作完成分)为:,9.4,,,8.9,,,8.8,,,8.9,,,8.6,,,8.7.,(1),如果不去掉最高分和最低分,这组数据的平均数和方差分别是多少,(,结果保留小数点后两位,),?,(2),如果去掉最高分和最低分,平均数和方差又分别是多少,(,结果保留小数点后两位,),?,(3),你认为哪种统计平均分的方法更合理?,5.,全班同学分成几个小组完成下面的活动:,(,1,)收集全班同学每个家庭在某月的用水量;,(,2,)将本组同学每个家庭在这个月的用水量作为样本数据,计算样本数据的平均数和方差,并根据样本数据的结论估计全班同学家庭用水量的情况;,(,3,)与其他小组进行交流,谈谈你对平均数、方差以及用样本估计总体的认识,.,
展开阅读全文