资源描述
2020/3/14,#,第,2,讲立体几何,(,大题,),立体几何,与空间向量,1,PART ONE,热点一平行、垂直关系的证明,热点二利用空间向量求空间角,热点三利用空间向量解决探索性问题,热点一平行、垂直关系的证明,用向量知识证明立体几何问题,仍然离不开立体几何中的定理,.,如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线,a,b,,只需证明向量,a,b,(,R,),即可,.,若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外,.,例,1,如图,在直三棱柱,ADE,BCF,中,平面,ABFE,和平面,ABCD,都是正方形且互相垂直,点,M,为,AB,的中点,点,O,为,DF,的中点,.,运用向量方法证明:,(1),OM,平面,BCF,;,证明,方法一,由题意,得,AB,,,AD,,,AE,两两垂直,以点,A,为原点建立如图所示的空间直角坐标系,A,xyz,.,棱柱,ADE,BCF,是直三棱柱,,,AB,平面,BCF,,,OM,平面,BCF,.,又,BF,,,BC,平面,BCF,,,OM,平面,BCF,,,OM,平面,BCF,.,(2),平面,MDF,平面,EFCD,.,证明,方法一,设平面,MDF,与平面,EFCD,的法向量分别为,n,1,(,x,1,,,y,1,,,z,1,),,,n,2,(,x,2,,,y,2,,,z,2,).,同理可得,n,2,(0,1,1).,n,1,n,2,0,,,平面,MDF,平面,EFCD,.,方法二,由题意及,(1),知,,BF,,,BC,,,BA,两两垂直,,又,CD,FC,C,,,CD,,,FC,平面,EFCD,,,OM,平面,EFCD,.,又,OM,平面,MDF,,,平面,MDF,平面,EFCD,.,跟踪演练,1,如图,在四棱锥,P,ABCD,中,,PA,底面,ABCD,,,AD,BC,,,AD,CD,,,BC,2,,,AD,CD,1,,,M,是,PB,的中点,.,(1),求证:,AM,平面,PCD,;,证明,如图,以,C,为坐标原点建立空间直角坐标系,C,xyz,,,则,A,(1,1,0),,,B,(0,2,0),,,C,(0,0,0),,,D,(1,0,0),,,设平面,PCD,的法向量为,n,1,(,x,0,,,y,0,,,z,0,),,,令,y,0,a,,则,n,1,(0,,,a,,,1),,,又,AM,平面,PCD,,所以,AM,平面,PCD,.,(2),求证:平面,ACM,平面,PAB,.,设平面,ACM,的法向量为,n,2,(,x,1,,,y,1,,,z,1,),,,令,x,2,1,,则,n,3,(1,1,0),,所以,n,2,n,3,1,1,0.,所以平面,ACM,平面,PAB,.,热点二利用空间向量求空间角,设直线,l,,,m,的方向向量分别为,a,(,a,1,,,b,1,,,c,1,),,,b,(,a,2,,,b,2,,,c,2,).,平面,,,的法向量分别为,(,a,3,,,b,3,,,c,3,),,,v,(,a,4,,,b,4,,,c,4,)(,以下相同,).,(1),线线夹角,(2),线面夹角,(3),二面角,例,2,(,2019,南昌模拟,),如图,四棱台,ABCD,A,1,B,1,C,1,D,1,中,底面,ABCD,是菱形,,CC,1,底面,ABCD,,且,BAD,60,,,CD,CC,1,2,C,1,D,1,4,,,E,是棱,BB,1,的中点,.,(1),求证:,AA,1,BD,;,证明,因为,C,1,C,底面,ABCD,,所以,C,1,C,BD,.,因为底面,ABCD,是菱形,所以,BD,AC,.,又,AC,CC,1,C,,,AC,,,CC,1,平面,ACC,1,A,1,,,所以,BD,平面,ACC,1,A,1,.,又,AA,1,平面,ACC,1,A,1,,,所以,BD,AA,1,.,(2),求二面角,E,A,1,C,1,C,的余弦值,.,解,如图,设,AC,交,BD,于点,O,,,依题意,,A,1,C,1,OC,且,A,1,C,1,OC,,,所以四边形,A,1,OCC,1,为平行四边形,,所以,A,1,O,CC,1,,且,A,1,O,CC,1,.,所以,A,1,O,底面,ABCD,.,以,O,为原点,,OA,,,OB,,,OA,1,所在直线分别为,x,轴,,y,轴,,z,轴建立空间直角坐标系,.,设,n,(,x,,,y,,,z,),为平面,EA,1,C,1,的法向量,,取,z,3,,得,n,(0,4,3),,,平面,A,1,C,1,C,的法向量,m,(0,1,0),,,又由图可知,二面角,E,A,1,C,1,C,为锐二面角,,(1),求证:,CD,BF,;,证明,E,为,CD,中点,,CD,2,AB,,,AB,DE,.,又,AB,CD,,,四边形,ABED,为平行四边形,.,BC,BD,,,E,为,CD,中点,,,BE,CD,,,四边形,ABED,为矩形,,,AB,AD,.,由,PAB,90,,得,PA,AB,,,又,PA,AD,A,,,PA,,,AD,平面,PAD,,,AB,平面,PAD,.,AB,CD,,,CD,平面,PAD,.,又,PD,平面,PAD,,,CD,PD,.,EF,PD,,,CD,EF,.,又,CD,BE,,,BE,EF,E,,,BE,,,EF,平面,BEF,,,CD,平面,BEF,.,又,BF,平面,BEF,,,CD,BF,.,(2),求直线,PB,与平面,PCD,所成的角的正弦值,.,解,由,(1),知,AB,平面,PAD,.,以,A,为原点,,AB,所在直线为,x,轴,,AD,所在直线为,y,轴,平面,PAD,内过点,A,且与,AD,垂直的线为,z,轴建立空间直角坐标系,A,xyz,,如图所示,.,PAD,120,,,PAz,30.,点,P,到,z,轴的距离为,1.,设平面,PCD,的一个法向量为,n,(,x,,,y,,,z,),,,设直线,PB,与平面,PCD,所成的角为,.,热点三利用空间向量解决探索性问题,与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或二面角满足特定要求时的存在性问题,.,处理原则是:先建立空间直角坐标系,引入参数,(,有些是题中已给出,),,设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断,.,例,3,(,2019,临沂模拟,),如图,平面,ABCD,平面,ABE,,四边形,ABCD,是边长为,2,的正方形,,AE,1,,,F,为,CE,上的点,且,BF,平面,ACE,.,(1),求证:,AE,平面,BCE,;,证明,BF,平面,ACE,,,AE,平面,ACE,,,BF,AE,,,四边形,ABCD,是正方形,,BC,AB,,,又平面,ABCD,平面,ABE,,平面,ABCD,平面,ABE,AB,,,CB,平面,ABE,,,AE,平面,ABE,,,CB,AE,,,BF,BC,B,,,BF,,,BC,平面,BCE,,,AE,平面,BCE,.,AE,平面,BCE,,,BE,平面,BCE,,,AE,BE,,,在,Rt,AEB,中,,AB,2,,,AE,1,,,ABE,30,,,BAE,60,,,以,A,为原点,建立空间直角坐标系,A,xyz,,,设,AM,h,,则,0,h,2,,,AE,1,,,BAE,60,,,设平面,MCE,的一个法向量,n,(,x,,,y,,,z,),,,平面,ABE,的一个法向量,m,(0,0,1),,,跟踪演练,3,如图,在直三棱柱,ABC,A,1,B,1,C,1,中,,AC,BC,,,AC,BC,AA,1,2,,点,P,为棱,B,1,C,1,的中点,点,Q,为线段,A,1,B,上一动点,.,(1),求证:当点,Q,为线段,A,1,B,的中点时,,PQ,平面,A,1,BC,;,证明,连接,AB,1,,,AC,1,,,点,Q,为线段,A,1,B,的中点,,,A,,,Q,,,B,1,三点共线,,且,Q,为,AB,1,的中点,,点,P,为,B,1,C,1,的中点,,,PQ,AC,1,.,在直三棱柱,ABC,A,1,B,1,C,1,中,,,AC,BC,,,BC,平面,ACC,1,A,1,,,又,AC,1,平面,ACC,1,A,1,,,BC,AC,1,.,AC,AA,1,,,四边形,ACC,1,A,1,为正方形,,,AC,1,A,1,C,,,又,A,1,C,,,BC,平面,A,1,BC,,,A,1,C,BC,C,,,AC,1,平面,A,1,BC,,而,PQ,AC,1,,,PQ,平面,A,1,BC,.,解,由题意可知,,CA,,,CB,,,CC,1,两两垂直,,以,C,为原点,分别以,CA,,,CB,,,CC,1,所在直线为,x,轴、,y,轴、,z,轴建立空间直角坐标系,C,xyz,,,连接,B,1,Q,,,PB,,设,Q,(,x,,,y,,,z,),,,B,(0,2,0),,,A,1,(2,0,2),,,P,(0,1,2,),,,B,1,(0,2,2),,,点,Q,在线段,A,1,B,上运动,,平面,A,1,PQ,的法向量即为平面,A,1,PB,的法向量,,设平面,A,1,PB,的法向量为,n,1,(,x,,,y,,,z,),,,令,y,2,,得,n,1,(1,2,1),,,设平面,B,1,PQ,的法向量为,n,2,(,x,,,y,,,z,),,,取,n,2,(1,,,0,,,),,,2,PART,TWO,押题预测,真题体验,(,2019,全国,,理,,18,),如图,直四棱柱,ABCD,A,1,B,1,C,1,D,1,的底面是菱形,,AA,1,4,,,AB,2,,,BAD,60,,,E,,,M,,,N,分别是,BC,,,BB,1,,,A,1,D,的中点,.,(1),证明:,MN,平面,C,1,DE,;,真题体验,证明,连接,B,1,C,,,ME,.,因为,M,,,E,分别为,BB,1,,,BC,的中点,,由题设知,A,1,B,1,DC,且,A,1,B,1,DC,,可得,B,1,C,A,1,D,且,B,1,C,A,1,D,,,故,ME,ND,且,ME,ND,,,因此,四边形,MNDE,为平行四边形,,MN,ED,.,又,MN,平面,C,1,DE,,,ED,平面,C,1,DE,,所以,MN,平面,C,1,DE,.,(2),求二面角,A,MA,1,N,的正弦值,.,建立如图所示的空间直角坐标系,D,xyz,,,押题预测,如图,1,,在梯形,ABCD,中,,AB,CD,,过,A,,,B,分别作,AE,CD,,,BF,CD,,垂足分别,E,,,F,,,AB,AE,2,,,CD,5,,已知,DE,1,,将梯形,ABCD,沿,AE,,,BF,同侧折起,得空间几何体,ADE,BCF,,如图,2.,(,1),若,AF,BD,,证明:,DE,平面,ABFE,;,证明,由已知得四边形,ABFE,是正方形,且边长为,2,,在图,2,中,,AF,BE,,,由已知得,AF,BD,,,BE,BD,B,,,BE,,,BD,平面,BDE,,,AF,平面,BDE,,,又,DE,平面,BDE,,,AF,DE,,,又,AE,DE,,,AE,AF,A,,,AE,,,AF,平面,ABFE,,,DE,平面,ABFE,.,解,在图,2,中,,AE,DE,,,AE,EF,,,DE,EF,E,,,DE,,,EF,平面,DEFC,,,即,AE,平面,DEFC,,,在梯形,DEFC,中,过点,D,作,DM,EF,交,CF,于点,M,,连接,CE,,,由题意得,DM,2,,,CM,1,,,由勾股定理可得,DC,CF,,,过,E,作,EG,EF,交,DC,于点,G,,,可知,GE,,,EA,,,EF,两两垂直,,设平面,ACD,的一个法向量为,n,(,x,,,y,,,z,),,,设,CP,与平面,ACD,所成的角为,,,
展开阅读全文