资源描述
单击此处编辑母版标题样式,编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,模块复习课,第,1,课时,计数原理,知识网络,要点梳理,分步乘法计数原理,;,排列数公式,;,组合,;,组合数的性质,;,二项式定理,;,二项式系数的性质,.,知识网络,要点梳理,1,.,分类加法计数原理,完成一件事有两类不同方案,在第一类方案中有,m,种不同的方法,在第二类方案中有,n,种不同的方法,那么完成这件事共有,N=,m+n,种不同的方法,.,2,.,分步乘法计数原理,完成一件事需要两个步骤,做第一步有,m,种不同的方法,做第二步有,n,种不同的方法,那么完成这件事共有,N=,m,n,种不同的方法,.,3,.,排列与排列数,(1),排列,:,从,n,个不同元素中取出,m,(,m,n,),个元素,按顺序排成一列,叫做从,n,个不同元素中取出,m,个元素的一个排列,.,知识网络,要点梳理,(2),排列数,:,从,n,个不同元素中取出,m,(,m,n,),个元素的,所有排列个数,叫做从,n,个不同元素中取出,m,个元素的排列数,记作,4,.,组合与组合数,(1),组合,:,从,n,个不同元素中取出,m,(,m,n,),个元素合成一组,叫做从,n,个不同元素中取出,m,个元素的一个,组合,.,(2),组合数,:,从,n,个不同元素中取出,m,(,m,n,),个元素的所有不同组合的个数,叫做从,n,个不同元素中取出,m,个元素的,组合数,记作,知识网络,要点梳理,5,.,排列数、组合数的公式及性质,知识网络,要点梳理,6,.,二项式定理,(1),定理,(2),通项,7,.,二项式系数与项的系数,(1),二项式系数,二项展开式中各项的系数,(,k,0,1,n,),叫做二项式系数,.,(2),项的系数,项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念,.,知识网络,要点梳理,8,.,二项式系数的性质,知识网络,要点梳理,9,.,各二项式系数的和,(,a+b,),n,的展开式的各个二项式系数的和等于,2,n,知识网络,要点梳理,思考辨析,判断下列说法是否正确,正确的在后面的括号内打“,”,错误的打“,”,.,(1),在分类加法计算原理中,两类不同方案中的方法可以相同,.,(,),(2),在分类加法计数原理中,每类方案中的方法都能直接完成这件事,.,(,),(3),在分步乘法计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有各个步骤都完成后,这件事情才算完成,.,(,),(4),如果完成一件事情有,n,个不同步骤,在每一步中都有若干种不同的方法,m,i,(,i=,1,2,3,n,),那么完成这件事共有,m,1,m,2,m,3,m,n,种方法,.,(,),知识网络,要点梳理,(5),所有元素完全相同的两个排列为相同排列,.,(,),(6),两个组合相同的充要条件是其中的元素完全相同,.,(,),(7),若组合式,C,nx=,C,nm,则,x=m,成立,.,(,),(8)(,n+,1)!,-n,!,=n,n,!,.,(,),(9)C,nka,n-k,b,k,是二项展开式的第,k,项,.,(,),(10),二项展开式中,系数最大的项为中间一项或中间两项,.,(,),(11)(,a+b,),n,的展开式中某一项的二项式系数与,a,b,无关,.,(,),(12)(,a+b,),2,n,中系数最大的项是第,n,项,.,(,),答案,:,(1),(2),(3),(4),(5),(6),(7),(8),(9),(10),(11),(12),专题归纳,高考体验,专题一,专题二,专题三,专题一,分类与分步计数原理的综合运用,【例,1,】,某校高中部,高一有,7,个班,高二有,7,个班,高三有,9,个班,学校利用周天组织学生到某养老院进行社会活动,.,(1),任选一个班的学生参加社会活动,有多少种不同的选法,?,(2),三个年级各选一个班的学生参加社会活动,有多少种不同的选法,?,(3),选两个班的学生参加社会活动,要求这两个班来自不同年级,有多少种不同选法,?,分析,运用两个原理解答问题时注意以下两点,:(1),要根据具体问题,看是先分步后分类还是先分类后分步,;(2),要思维清晰,保证分类标准的唯一性,.,专题归纳,高考体验,专题一,专题二,专题三,解,(1),分三类,:,第一类从高一年级选一个班,有,7,种不同方法,;,第二类从高二年级选一个班,有,7,种不同方法,;,第三类从高三年级选一个班,有,9,种不同方法,由分类加法计数原理,共有,7,+,7,+,9,=,23,种不同选法,.,(2),每种选法分三步,:,第一步从高一年级选一个班,有,7,种不同的方法,;,第二步从高二年级选一个班,有,7,种不同的方法,;,第三步从高三年级选一个班,有,9,种不同方法,由分步乘法计数原理,共有,7,7,9,=,441,种不同的选法,.,(3),分三类,每类又分两步,第一类从高一、高二两个年级各选一个班,有,7,7,种不同方法,;,第二类从高一、高三两个年级各选一个班,有,7,9,种不同方法,;,第三类从高二、高三两个年级各选一个班,有,7,9,种不同方法,由分类加法计数原理,故共有,7,7,+,7,9,+,7,9,=,175,种不同选法,.,专题归纳,高考体验,专题一,专题二,专题三,反思感悟,“,分类,”,表现为其中任何一类均可独立完成所给事情,.,“,分步,”,表现为必须把各步骤均完成,才能完成所给事情,所以准确理解两个原理的关键在于弄清分类加法计数原理强调完成一件事情的几类办法互不干扰,不论哪一类办法中的哪一种方法都能够独立完成事件,.,分步乘法计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成事件,步与步之间互不影响,即前一步用什么方法不影响后一步采取什么方法,.,专题归纳,高考体验,专题一,专题二,专题三,跟踪训练,1,用,1,2,3,4,四个数字可重复地任意排成三位数,并把这些数由小到大排成一个数列,a,n,.,(1),写出这个数列的前,11,项,;,(2),求这个数列共有多少项,;,(3),若,a,n,=,341,求,n.,解,(1),用,1,2,3,4,四个数字排成三位数,前,11,项由小到大的顺序为,111,112,113,114,121,122,123,124,131,132,133,.,(2),这个数列的项数就是用,1,2,3,4,排成的三位数的个数,每一个位置都有,4,种排法,根据分步乘法计数原理共有,4,4,4,=,64,项,.,专题归纳,高考体验,专题一,专题二,专题三,专题归纳,高考体验,专题一,专题二,专题三,专题二,排列与组合的应用,【例,2,】,有,1,2,3,4,5,这五个数字,可以组成比,20 000,大,并且百位数字不是,3,的没有重复数字的五位数,共有,个,.,答案,:,78,专题归纳,高考体验,专题一,专题二,专题三,跟踪训练,2,由,0,1,2,3,4,5,六个数字可组成,个被,5,整除且数字不同的六位奇数,.,解析,:,由题意可知,首位、末位是两个特殊位置,“0”,是特殊元素,首位可取元素的集合,A=,1,2,3,4,5,末位可取元素的集合,B=,5,B,A.,答案,:,96,专题归纳,高考体验,专题一,专题二,专题三,【例,3,】,将,5,列车停在,5,条不同的轨道上,其中,a,列车不停在第一轨道上,b,列车不停在第二轨道上,那么不同的停放方法有,(,),A.120,种,B.96,种,C.78,种,D.72,种,答案,:,C,专题归纳,高考体验,专题一,专题二,专题三,跟踪训练,3,从班委会,5,名成员中选出,3,名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有,种,.,(,用数字作答,),答案,:,36,专题归纳,高考体验,专题一,专题二,专题三,【例,4,】,A,B,C,D,四人排成一排,A,B,必须相邻的排法有,种,.,答案,:,12,专题归纳,高考体验,专题一,专题二,专题三,跟踪训练,4,五位老师和五名学生站成一排,:,(1),五名学生必须排在一起共有多少种排法,?,(2),五名学生不能相邻共有多少种排法,?,【例,5,】,7,个人站成一排照相,要求甲、乙、丙两两不相邻有多少种排法,?,专题归纳,高考体验,专题一,专题二,专题三,【例,6,】,今有,2,个红球、,3,个黄球和,4,个白球,同色球不加以区分,将这,9,个球排成,1,列,有,种不同的方法,(,用数字作答,),.,答案,:,1 260,专题归纳,高考体验,专题一,专题二,专题三,【例,7,】,7,人站成一排照相,要求甲、乙之间恰好间隔,2,人的站法有多少种,?,专题归纳,高考体验,专题一,专题二,专题三,反思感悟,将具体问题抽象为排列问题或组合问题,是解排列、组合应用题的关键一步,.,(1),正确分类或分步,恰当选择两个计数原理,.,(2),有限制条件的排列组合问题应优先考虑,“,受限元素,”,或,“,受限位置,”,.,而排列组合讨论的问题共同点是,“,元素不相同,”,不同点是排列与顺序有关,组合与顺序无关,.,1,.,特殊元素特殊位置,“,优先安排法,”,对于带有特殊元素或特殊位置的排列组合问题,一般应先考虑特殊元素或特殊位置,再考虑其他元素,.,2,.,合理分类与准确分步法,解含有约束条件的排列组合问题,应按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏,.,专题归纳,高考体验,专题一,专题二,专题三,3,.,相邻问题,“,捆绑法,”,对于某几个元素要求相邻的排列问题,可先将相邻的元素,“,捆绑,”,起来,看作一个,“,大,”,元素与其他元素排列,然后再对相邻元素内部之间进行排列,.,4,.,不相邻问题,“,插空法,”,对于某几个元素不相邻的排列问题,可先将其他元素排好,然后再将不相邻的元素在已排好的元素之间及两端的空隙中插入即可,.,5,.,顺序固定问题用,“,除法,”,或,“,自动上位法,”,对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同进行排列,然后用总排列数除以这几个元素的全排列数,.,6,.,“,小团体,”,问题,“,先整体后局部法,”,对于,“,小团体,”,排列问题,与,“,相邻问题,”,相似,可先将小团体看作一个元素与其余元素排列,最后再进行小团体内部的排列,.,专题归纳,高考体验,专题一,专题二,专题三,跟踪训练,5,高一年级,7,个班级要组成年级篮球队,共需,10,名队员,每个班至少要出一名,则不同的组成方式共有多少种,?,解,设,7,个班出的队员数分别为,x,1,x,2,x,7,则,x,1,+x,2,+,+x,7,=,10,即相当于在,10,个小方块之间的,9,个空档中插入,6,块隔板将其分成,7,部分,故不同的组成方式为,=,84,种,.,专题归纳,高考体验,专题一,专题二,专题三,专题三,二项式定理的应用,(1),求含有,x,3,的项,;,(2),求系数最大的项,.,分析,先根据条件求出,n,的值,再求解,.,专题归纳,高考体验,专题一,专题二,专题三,专题归纳,高考体验,专题一,专题二,专题三,【例,9,】,若,(,x,2,-,3,x+,2),5,=a,0,+a,1,x+a,2,x,2,+,+a,10,x,10,.,(1),求,a,1,+a,2,+,+a,10,;,(2),求,(,a,0,+a,2,+a,4,+a,6,+a,8,+a,10,),2,-,(,a,1,+a,3,+a,5,+a,7,+a,9,),2,.,解,(1),令,f,(,x,),=,(,x,2,-,3,x+,2),5,=a,0,+a,1,x+a,2,x,2,+,+a,10,x,10,a,0,=f,(0),=,2,5,=,32,a,0,+a,1,+a,2,+,+a,10,=f,(1),=,0,故,a,1,+a,2,+,+a,10,=-,32,.,(2)(,a,0,+a,2,+a,4,+a,
展开阅读全文