资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,*,Click to edit Title Slide,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,资金约束下的多阶段套期保值研究,华 南 理 工 大 学,张 卫 国,主要内容,1,2,3,问题的提出,单品种套期保值模型及有效性,多品种套期保值模型及有效性,资金约束下多阶段套期保值模型及有效性,多阶段收益不相关复合期货组合套期保值模型,实际应用,1.1,问题的提出,套期保值是通过在期货市场建立与现货市场数量相当、交易相反的头寸来对冲现货市场头寸,从而达到规避现货价格风险的活动。现有套期保值研究可分为静态和动态调整两大类。,静态调整模型把套期保值策略看作静态不变的,(,单期)。动态调整模型主要是通过整体考虑多期套期保值,给出相应的优化策略。,1.1,问题的提出,国内外套期保值失败导致巨额亏损屡见不鲜,1993,年,德国金属公司(,MGRM,)损失,42,亿美元,多家银行对其进行援助,才免遭破产,2008,年,东航套期保值损失高达,62,亿元人民币,2008,年,中国远洋套期保值浮亏高达,39.5,亿元,我们总结一些套保案例失败的原因如下:,期货资产的波动性较大,时常会导致保证金的不足,需要投资者及时补足保证金;但投资主体短期内却没有足够的资金来维持,最终被迫平仓,套期保值的策略也就失败了。,1.1,问题的提出,-MGRM,公司案例,1989,年,德国排名第十四位的工业企业德国金属公司(,Metallgesellschaft A.G.,,以下简称,MG,公司)及其它在美国的若干关联子公司共获得了美国,Castle,能源公司,49,的股份,,Castle,公司原先是美国的一家石油、天然气开采企业,德国金属公司参股后,通过融资帮助,Castle,公司建立了石油提炼加工厂。,1.1,问题的提出,-MGRM,公司案例,MGRM,与,Castle,公司签订了一份长期合约,包销,Castle,公,司所有的石油提炼产品,以最近月份的原油价格加成若干美元作为购买价格。,MRGM,公司在,1992,年与客户签订了一份,10,年的远期供油,合同,承诺在未来,10,年内以稍高于当时市价的固定价格定,期提供给客户总量约,1.6,亿桶的石油商品。,1.1,问题的提出,-MGRM,公司案例,MGRM,公司是以浮动的价格购入,然后以事先约定的固,定价格销售,这种购销关系都是长期性。因此,,MGRM,公司不得不采用期货等金融衍生品进行风险管理。,当时的,NYMEX,最远的期货合约是,18,个月,但几乎没有交,易。,MGRM,这么大的头寸根本无法在冷清月份上实现。,因此,,MGRM,公司采取的就是滚动套期保值方法进行风,险管理。,1.1,问题的提出,-MGRM,公司案例,在,1993,年后期,,MGRM,公司在,NYMEX,建立了相当于,5500,万桶的德克萨斯中质原油、无铅汽油和,2,号取暖油期货合,约头寸(相当于,55000,张合约)。而当时的,NYMEX,的无,铅汽油和,2,号取暖油的每日交易量平均在,15000,30000,张 左右。这些套保头寸都是多头。,1993,年底,,OPEC,未能在减产问题上达成协议,油价价格,直线下滑,从每桶,19,美元跌至,15,美元,这使得,MGRM,公司,持有的多头头寸面临庞大的保证金追缴。而其长期供油合,约收益还未实现,所以出现了庞大的资金缺口。,1.1,问题的提出,-MGRM,公司案例,紧接着,关于,MGRM,公司大量亏损、资金困难的消息开,始在金融市场传播,,NYMEX,为了防止出现违约,要求,MGRM,提供“超级”保证金(,Super Margin,),数额是平,常保证金的两倍。之后,,NYMEX,宣布撤销对,MGRM,公司,头寸的套期保值豁免,这意味着,MGRM,不得不大量平,仓。而他在现货上虽然积累了大量的潜在利润,但由于难,以变现而形同虚设。,MGRM,在能源期货和互换交易上损失,13,亿美元,其后,,MG,公司又花了,10,亿美元解除与,Castle,能源公司的合约。,150,家德国和其它国际银行对,MG,公司采取了一个数额高,达,19,亿美元的拯救行动,才使得,MG,公司避免了破产。,多阶段套期保值的风险,多阶段套期保值风险,基差风险,投机风险,决策风险,财务风险,交割风险,流动性风险,1.1,问题的提出(续),以往的研究往往忽视套保的成本和资金约束。但是在实际,中,资金约束是较常见的情形,特别在是多阶段的套保投,资中:,期货浮亏,造成资金缺口:,如果决策时不考虑资金约束,当资产价格出现较大变,动,出现保证金不足的状况,而此时公司的资金(融,资能力)有限,就会出现流动性不足的问题,严重者,如德国金属公司、美国长期资本管理公司,会造成公,司破产和区域银行危机的严重后果。,套保成本:,实际中购买期权期货的成本也比较高,不容忽略。例,如:,08,年东航进行套保的时候,就为了节约套保成本,,而利用卖出看跌期权争取期权费用来抵充昂贵的买入,看涨期权费。,所以有必要对资金约束下的多期套期保值问题进行研究。,关于资金约束下的套期保值模型研究,包括单品种模型,和多品种模型。,(,1,)资金约束下的单品种套期保值模型:,Blank,提出了套期保值资金约束下的实证模型。吴冲,锋提出了连续,N,天出现涨跌停所需的最小资金模型。,Lien,研究了资金流动性约束对于套期保值的影响,结果显示,资金流动性约束将导致较小的期货头寸。,Wong,研究了资金,流动性约束下期货价差在套期保值的作用。杨万武建立了基,于资金限制的最优,Sharp,套期比模型。,Lien,和,Wong,研究了资,金流动性约束下跨国公司的外汇汇率套期保值模型。,这些研究基本属于单阶段套期保值的研究,对资金约束,下的多阶段套期保值问题的探讨非常少。,1.2,资金约束下的套期保值,(,2,)资金约束下的多品种套期保值模型,这方面的研究主要有:迟国泰建立了基于资金限制,的多品种套保模型,利用多元,GARCH,预测多品种组合,的资金需求量,确定多品种套期保值的最优策略。,Wong,和,Xu,研究了资金约束下的期货期权组合的套期保值模型。,Adam-Muller,和,Panaretou,则研究了借入资金的期货期权组合的套期保值模型。,Fu,和,Zhang,则研究了资金约束下规避逐日盯市风险的多品种交叉套期保值模型。,目前,资金约束下的多品种套期保值模型只有单阶段方面的研究,尚未涉及到多阶段的问题。,1.2,资金约束下的套期保值(续),2.1,多阶段单品种套保模型,考虑以下投资情形:,公司长期需要采购原材料,为了规避风险,公司决定用,期货交易锁定原料成本。但有两个问题:,(,1,)由于投资期限长,市场上没有期限相匹配的期货品,种,这就需要在投资期限内展期期货合约;,(,2,)用于采购和套保的经费固定,每个阶段需要平衡原,材料现货和期货的资金占用(对现货资产和期货资产进行分,配),从而实现长期套期保值的风险最小。,2.1.1,多阶段单品种套保模型,假设现货,S,用期货,F,进行套期保值,,e,t,S,和,e,t,F,分别是第,t,期,初两种资产的收益率,,u,t,S,和,u,t,F,分别是第,t,期初两种资产的投,资额,,X,t,是第,t,期初的资产总额。,第,t,期初和第,t+1,期初持有的,套保组合资产总额:,由于多期套期保值是以末期风险最小为目标,即目标函数为:,建立模型:,资金约束条件,状态转移方程,2.1.1,多阶段单品种套保模型(续),E,2,(,X,T,),使,目标函数不可分,导致模型求解困难,因此我们构造辅助问题:,转化条件:,*,=2E(X,T,),。,其中,,p,t,=,e,t,F,-,e,t,S,其中:,2.1.2,模型求解,辅助模型求解,将求得的必要条件 代入辅助模型的解中,得到原模型的推导结果:,,,,,,,2.1.2,模型求解,原模型求解推导,辅助模型求解推导,实际求解过程,实际应用时:只要确定初始的投资限额并估计出未来各期的收益率分布,就可以通过顺推的方式直接求出各期的资产配置额,而不需要进行动态规划的逆推迭代运算。,2.1.3,套头比及套保有效性,最优套头比,=,套保有效性,=,其中,,J,t,S,和,J,t,F,是现货和期货在第,t,期初的价格,,c,是保证金比例,,C,t,都是设定的中间变量。,其中,,a,b,c,都是设定的中间变量。,2.2,多阶段多品种套期保值,现实中,很多现货没有对应的期货品种,只能使用其他价格相关性较大的品种来替代,为了增加套保的有效性,往往需要采用多种期货工具与现货进行组合对冲。,由于期货的品种增加,在模型中,套保比率和期货收益率,就不单是一个变量,而,是向量形式,。,但与上一节不同,,本节的资金约束是考虑了如下情形:即,现货头寸长期固定,,而用来套保的费用有资金预算,,整个期货组合,的资金占用要低于投资者,预算资金的约束,,,这种,资金约束,情形,其实,更为普遍,的。,2.2,多阶段多品种套期保值(续),假设有数量为,Q,的现货资产需要保值,用,n,个期货品种进行对冲,,h,t,i,是第,i,种期货在第,t,期初的投资额,X,t,是第,t,期初所有期货资,产总额,则,t,期初和,t+1,期初持有的期货资产总额:,令,Z,t,是第,t,期初整个套保组合资产总额,,P,0,s,为投资初期现货的价格,,r,T,s,为整个投资期内现货的总收益。则投资者在整个套期保值期间,的资产变动为:,套期保值的目标是使投资末期整个套保组合资产变动的风险最小,,则模型为:,其中,,,,2.2.1,多品种套保模型建立,表达式与模型,M,的解相同:,建立资金约束下的多品种多阶段套保组合模型:,,新模型解的,将模型,M,的目标函数转化为,与,X,T,无关,不影响求解,2.2.2,模型求解,以此为辅助模型的目标函数,得到辅助模型表示如下:,AM,(,),的最优解转化为问题,M1,的最优解的必要条件是,*,=,2,E(,X,T,)-,2QP,0,s,E,(,r,T,s,)。,2.2.2,模型求解(续),辅助模型求解,将求得的必要条件,代入辅助模型的解中。,得到原模型的推导结果:,其中,,,,,,,2.2.3,套头比及套保有效性,最优套头比,=,套保有效性,=,其中,,J,t,F,期货在第,t,期初的价格,,c,是保证金比例。,2.3,模型进一步的探讨,模型中资金约束条件的放宽:,表面上看模型约束条件里的“等于”条件,即每期各种,资产之和等于总资产,的限制,过于严格,它只是所有投资情况的一种,更一般的是所需,投入资金之和小于或者等于投资预算,的约束。其实只要在资产组合中增加一种无风险资产,就可以达到放宽约束的效果,这样做也与现实中将多出的资金存入银行相符。,实际上,加入缓冲资金后,与没有缓冲资金的情形相比,只要我们确定无风险资产在各阶段收益率的数值,就可以将原来的投资约束条件放宽至更自由的资金配置情形。,2.4,黄金套期保值实例,(,以单品种为例,),表,2.1,:模型的输入变量:收益期望、方差和协方差,期数,t=0,t=1,t=2,t=3,0.00329,1.0770,1.0619,1.0575,0.9520,0.00325,0.9226,0.9046,0.9577,1.0523,-0.00305,假设投资者有,100,万元准备用于黄金的实物投资和套期保值,为期,4,期,假设保证金率为,10%,。需要计算得到每个投资阶段的最优投资额和最佳套头比。,选取,2008,年,1,月到,2008,年,4,月间国际黄金现货和黄金期货价格的数据进行分析,计算出各期黄金现货和期货月市场收益率的均值
展开阅读全文