2-货币时间价值

上传人:6544****21ff 文档编号:253041871 上传时间:2024-11-27 格式:PPTX 页数:76 大小:751.18KB
返回 下载 相关 举报
2-货币时间价值_第1页
第1页 / 共76页
2-货币时间价值_第2页
第2页 / 共76页
2-货币时间价值_第3页
第3页 / 共76页
点击查看更多>>
资源描述
,单击此处编辑母版文本样式,单击此处编辑母版标题样式, 货币,时,时间价值计算模,型,型,基本概念及符号,一,终值和现值的计算,二,利率与计息期数的计算,三,一、基本概念及,符,符号,(一)时间轴,货币时间价值工,具,具,顾名思义,,时间轴,就是能够表示各,个,个时间点的数轴,。,。如果不同时间,点,点上发生的现金,流,流量不能够直接,进,进行比较,那么,在,在比较现金数量,的,的时候,就必须,同,同时强调现金发,生,生的时点。如图,2-1,所示,时间轴上,的,的各个数字代表,的,的就是各个不同,的,的时点,一般用,字,字母,t,表示。,0,1,3,2,现在,第,1,年末,或,第,2,年初,时点:,现金流:,发生时间:,-100,-150,+50,+200,第,2,年末,或,第,3,年初,第,3,年末,或,第,4,年初,图,2-1,货币时间价值时,间,间轴,需要注意两点:,(,1,)除,0,点以外,每个时,点,点数字代表的都,是,是两个含义,即,当,当期的期末和下,一,一期的期初,如,时,时点,t=1,就表示第,1,期的期末和第,2,期的期初。,(,2,)现金流数字前,面,面的正负号表示,的,的是现金流入还,是,是现金流出,其,中,中正号表示的数,值,值是从公司外部,流,流入到公司内部,的,的现金,如收回,的,的销售收入、固,定,定资产的残值收,入,入等,而负号表,示,示的数值则是指,从,从公司内部流入,到,到外部的现金,,如,如初始投资或其,他,他现金投资等。,为简化,本书中,以,以后的现金流都,做,做如下假设,即,现,现金流入量均发,生,生在每期期末,,现,现金流流出量均,发,发生在每期期初,。,。除非特别说明,,,,决策所处的时,点,点均为时点,t=0,,即,“,现在,”,。,(二)单利和复,利,利,单利和复利是两,种,种不同的利息计,算,算体系。,在,单利,(,simpleinterest,)情况下,只有,本,本金计算利息,,利,利息不计算利息,;,;,在,复利,(,compound interest,)情况下,除本,金,金计算利息之外,,,,每经过一个计,息,息期所得到的利,息,息也要计算利息,,,,逐期滚算,俗,称,称,“,利滚利,”,。,(三)现值和终,值,值,现值即现在(,t=0,)的价值,是一,个,个或多个发生在,未,未来的现金流相,当,当于现在时刻的,价,价值,用,PV,(,Presentvalue,的简写)表示。,终,终值即未来值(,如,如,t=n,时的价值),是,一,一个或多个现在,发,发生或未来发生,的,的现金流相当于,未,未来时刻的价值,,,,用,FV,(,Futurevalue,的简写)表示。,(四)单一支付,款,款项和系列支付,款,款项,单一支付款项,是指在某一特定,时,时间内只发生一,次,次的简单现金流,量,量,如投资于到,期,期一次偿还本息,的,的公司债券就是,单,单一支付款项的,问,问题。,系列支付款项,是指在,n,期内多次发生现,金,金流入或现金流,出,出。,年金,是系列支付款项,的,的特殊形式,是,在,在一定时期内每,隔,隔相同时间(如,一,一年)发生相同,金,金额的现金流量,。,。,年金,(用,A,表示,即,Annuity,的简写)可以分,为,为普通年金、预,付,付年金、递延年,金,金和永续年金等,形,形式。,1.,普通年金,普通年金又称为,后,后付年金,是指,一,一定时期内,每,期,期期末发生的等,额,额现金流量。例,如,如从投资的每年,支,支付一次利息、,到,到期一次还本的,公,公司债券中每年,得,得到的利息就是,普,普通年金的形式,。,。普通年金,既,可,可以求现值,也,可,可以求终值。,2.,预付年金,预付年金又称为,先,先付年金,是指,一,一定时期内,每,期,期期初发生的等,额,额现金流量。例,如,如对租入的设备,,,,如果要求每年,年,年初支付相等的,租,租金额,那么该,租,租金就属于预付,年,年金的形式。与,普,普通年金相同,,预,预付年金也既可,以,以求现值,也可,以,以求终值。,3.,递延年金,递延年金又成为,延,延期年金,是指,第,第一次现金流量,发,发生在第,2,期、或第,3,期、或第,4,期,的等额现金流量,。,。一般情况下,,假,假设递延年金也,是,是发生在每期期,末,末的年金,因此,,,,递延年金也可,以,以简单地归纳为,:,:第一笔现金流,量,量不是发生在第,1,期的普通年金,,都,都属于递延年金,。,。对于递延年金,,,,既可以求现值,,,,也可以求终值,。,。,4,.,永续年金,永续年金是指无,限,限期支付的年金,,,,即永续年金的,支,支付期,n,趋近于无穷大。,由,由于永续年金没,有,有终止的时间,,因,因此只能计算现,值,值,不能计算终,值,值,二、终值和现值,的,的计算,(,一,),单一支付款项的,终,终值和现值,单一支付款项的,终,终值和现值一般,简,简称为复利终值,和,和复利现值。,(,1,),复利终值,(已知现值,PV,,求终值,FV,),复利终值是指一,项,项现金流量按复,利,利计算的一段时,期,期后的价值,其,计,计算公式为:,其中,(,1+r,),n,通常称为,“,复利终值系数,”,,记作(,F/P,,,r,,,n,),可直接查阅,书,书后的附表,“,复利终值系数表,”,。,利率或折现率,例,2,1,假设某公司向银,行,行借款,100,万元,年利率为,10%,,借款期为,5,年,那么,5,年后该公司应向,银,银行偿还的本利,和,和是多少?,FV=PV,(,1+r,),n,=100,(,1+10%,),5,=100,(,F/P,,,10%,,,5,),=100,1.6105=161.05,(万元),(,2,),复利现值,(已知终值,FV,,求现值,PV,),计算现值的过程,通,通常称为折现,,是,是指将未来预期,发,发生的现金流量,按,按折现率调整为,现,现在的现金流量,的,的过程。对于单,一,一支付款项来说,,,,现值和终值是,互,互为逆运算的。,现,现值的计算公式,为,为 :,其中,(,1+r,),-n,通常称为,“,复利现值系数,”,,记作(,P/F,,,r,,,n,),可直接查阅,书,书后的附表,“,复利现值系数表,”,。,例,2,2,假设某,投,投资项,目,目预计,5,年后可,获,获得收,益,益,800,万元,,按,按年折,现,现率,12%,计算,,问,问这笔,收,收益的,现,现在价,值,值是多,少,少?,PV=FV,(,1+r,),-n,=800,(,1+12%,),-5,=800,(,P/F,,,12%,,,5,),=8000.5674=453.92,(万元,),),(二),系,系列支,付,付款项,的,的终值,和,和现值,由于系,列,列支付,款,款项可,以,以分为,普,普通年,金,金、预,付,付年金,、,、递延,年,年金和,永,永续年,金,金等形,式,式,因,此,此计算,终,终值和,现,现值时,要,要区别,对,对待。,1.,普通年,金,金终值,(已知,普,普通年,金,金,A,,求终,值,值,FV,),普通年,金,金又称,为,为后付,年,年金,,是,是指一,定,定时期,内,内,每,期,期期末,发,发生的,等,等额现,金,金流量,。,。年金,终,终值犹,如,如零存,整,整取的,本,本利和,,,,它是,一,一定时,期,期内每,期,期期末,现,现金流,量,量的复,利,利终值,之,之和。,设每年,的,的支付,金,金额为,A,,利率,为,为,r,,期数,为,为,n,,则普,通,通年金,终,终值的,计,计算公,式,式为:,式中方,括,括号中,的,的数值,,,,通常,称,称作,“,年金终,值,值系数,”,,记作,(F/A,,,r,,,n ),,可以,直,直接查,阅,阅书后,的,的附表,“,年金终,值,值系数,表,表,”,。,例,2,3,假设某,项,项目在,3,年建设,期,期内每,年,年年末,向,向银行,借,借款,100,万元,,借,借款年,利,利率为,10%,,问项,目,目竣工,(,(即第,3,年年末,),)时应,该,该支付,给,给银行,的,的本利,和,和总额,是,是多少,?,在实际,工,工作中,,,,公司,可,可根据,要,要求在,贷,贷款期,内,内建立,偿,偿债基,金,金,以,保,保证在,期,期满时,有,有足够,的,的现金,偿,偿还贷,款,款的本,金,金或兑,现,现债券,。,。此时,的,的债务,实,实际上,等,等于年,金,金终值,FV,,每年,提,提取的,偿,偿债基,金,金等于,分,分次付,款,款的年,金,金,A,。也可,以,以说,,年,年偿债,基,基金的,计,计算实,际,际上是,年,年金终,值,值的逆,运,运算。,其,其计算,公,公式为,:,:,式中方,括,括号中,的,的数值,称,称作,“,偿债基,金,金系数,”,,记作,(A/F,,,r,,,n),,可通,过,过年金,终,终值系,数,数的倒,数,数推算,出,出来。,例,2,4,假设某,公,公司有,一,一笔,4,年后到,期,期的借,款,款,数,额,额为,1000,万元,,为,为此设,置,置偿债,基,基金,,年,年利率,为,为,10%,,到期,一,一次还,清,清借款,,,,问每,年,年年末,应,应存入,的,的金额,是,是多少,?,2,.,普通年,金,金现值,(已知,普,普通年,金,金,A,,求现,值,值,PV,),普通年,金,金现值,是,是指一,定,定时期,内,内每期,期,期末现,金,金流量,的,的现值,之,之和。,年,年金现,值,值计算,的,的一般,公,公式为,:,:,式中方,括,括号内,的,的数值,称,称作,“,年金现,值,值系数,”,,记作,(P/A,,,r,,,n),,可直,接,接查阅,书,书后的,附,附表,“,年金现,值,值系数,表,表,”,。,也可以,写,写作:,例,2,5,假设公,司,司租入,A,设备,,租,租期,3,年,要,求,求每年,年,年末支,付,付租金,100,元,在,年,年折现,率,率为,10%,的情况,下,下,该,公,公司,3,年中租,金,金的现,值,值是多,少,少?,年金现,值,值的逆,运,运算是,年,年资本,回,回收额,的,的计算,。,。资本,回,回收额,是,是指在,给,给定的,年,年限内,等,等额回,收,收或清,偿,偿初始,投,投入的,资,资本或,所,所欠的,债,债务,,年,年资本,回,回收额,的,的计算,公,公式为,:,:,式中方,括,括号内,的,的数值,称,称作,“,资本回,收,收系数,”,,记作,(A/P,,,r,,,n),,可利,用,用年金,现,现值系,数,数的倒,数,数求得,。,。,例,2,6,假设某,公,公司现,在,在借到,1 000,万元的,贷,贷款,,要,要按年,利,利率,12%,在,10,年内均,匀,匀偿还,,,,那么,该,该公司,每,每年应,支,支付的,金,金额是,多,多少,?,3.,预付年,金,金终值,(已知,预,预付年,金,金,A,,求预,付,付年金,终,终值,FV,),预付年,金,金与普,通,通年金,的,的差别,仅,仅在于,现,现金流,量,量的发,生,生时间,不,不同。,由,由于年,金,金终值,系,系数表,和,和年金,现,现值系,数,数表是,按,按常见,的,的普通,年,年金编,制,制的,,在,在利用,这,这种普,通,通年金,系,系数表,计,计算预,付,付年金,的,的终值,和,和现值,时,时,可,在,在计算,普,普通年,金,金的基,础,础上加,以,以适当,的,的调整,。,。,预付年,金,金终值,的,的一般,计,计算公,式,式为:,也可以,写,写成,4.,预付年,金,金现值,(已知,预,预付年,金,金,A,,求预,付,付年金,现,现值,PV,),预付年,金,金的现,值,值可以,在,在普通,年,年金现,值,值的基,础,础上加,以,以调整,,,,其计,算,算公式,为,为:,也可以,写,写成:,5.,递延年,金,金终值,(已知,递,递延年,金,金,A,,求递,延,延年金,终,终值,FV,),递延年,金,金的第,一,一次现,金,金流量,并,并不是,发,发生在,第,第一期,的,的,但,如,如果将,发,发生递,延,延年金,的,的第一,期,期设为,时,时点,1,,则用,时,时间轴,表,表示的,递,递延年,金,金与普,通,通年金,完,完全相,同,同,因,此,此递延,年,年金终,值,值的计,算,算方法,与,与普通,年,年金终,值,值的计,算,算基本,相,相同,,只,只是发,生,生的期,间,间,n,是发生,递,递延年,金,金的实,际,际期限,。,。,6.,递延年,金,金现值,(已知,递,递延年,金,金,A,,求递,延,延年金,现,现值,PV,),递延年,金,金现值,的,的计算,有,有两种,方,方法:, 分,段,段法,,其,其基本,思,思路是,将,将递延,年,年金分,段,段计算,。,。先求,出,出正常,发,发生普,通,通年金,期,期间的,递,递延期,末,末的现,值,值,然,后,后再将,该,该现值,按,按单一,支,支付款,项,项的复,利,利现值,计,计算方,法,法,折,算,算为第,一,一期期,初,初的现,值,值。,假设递,延,延期为,m(mn),,即先,求,求出,m,期后的,(n-m),期普通,年,年金现,值,值,然,后,后再将,此,此现值,折,折算到,第,第一期,初,初的现,值,值。其,计,计算公,式,式为:,扣除法,,,,其基,本,本思路,是,是假定,递,递延期,中,中也进,行,行收付,,,,先将,递,递延年,金,金视为,正,正常的,普,普通年,金,金,计,算,算普通,年,年金现,值,值,然,后,后再扣,除,除递延,期,期内未,发,发生的,普,普通年,金,金,其,结,结果即,为,为递延,年,年金的,现,现值。,其计算公式,为,为:,例,2,7,假设某公司,打,打算在年初,存,存入一笔资,金,金,从第,4,年起每年年,末,末取出,100,元,至第,9,年年末取完,,,,在年利率,为,为,10%,的情况下,,问,问该公司最,初,初一次应该,存,存入多少钱,?,7.,永续年金现,值,值,(已知永续,年,年金,A,,求永续年,金,金现值,PV,),永续年金的,现,现值可以通,过,过普通年金,现,现值的计算,公,公式推导得,出,出。,当,n,时,,(1+r)-n,的极限为零,,,,故上式可,写,写成:,例,2,8,假设某公司,拟,拟建立一项,永,永久性的奖,学,学金,每年,计,计划颁发,10000,元奖金资助,某,某大学学生,。,。如果利率,为,为,10%,,那么公司,现,现在应该存,入,入多少钱,?,8.,增长型永续,年,年金现值,(已知第,0,期现金流量,C0,,每年增长,率,率为,g,,求现值,PV,),增长型永续,年,年金是指无,限,限期支付的,,,,但每年呈,固,固定比率增,长,长的各期现,金,金流量。它,与,与永续年金,的,的区别在于,,,,永续年金,每,每期发生的,金,金额都是固,定,定的;而增,长,长型永续年,金,金的各期现,金,金流量是以,固,固定比率每,期,期增长的。,设,C,0,为第,0,期的现金,流,流量,,g,表示现金,流,流量每年,预,预计增长,率,率,则第,1n,期及以后,的,的增长型,永,永续年金,发,发生额分,别,别为:,C,1,=C,0,(,1+g,)、,C,2,=C,0,(1+g),2,、,C,3,=C,0,(1+g),3,C,n,=C,0,(1+g),n,,其现值,计,计算公式,可,可表示为,:,:,当增长率,g,折现率,r,时,该增,长,长型永续,年,年金现值,可,可简化为,:,:,三、利率,与,与计算期,数,数的计算,影响现金,流,流量时间,价,价值的因,素,素有四个,:,:,现值、终,值,值、利率,(,(折现率,),)和计息,期,期数,,只要知,道,道了其中,任,任意三个,因,因素就可,求,求出第四,个,个因素。,在,在以上计,算,算中都是,假,假定利率,(,(折现率,),)、计息,期,期数、现,值,值(或终,值,值)是已,知,知的,求,解,解终值(,或,或现值),。,。但在某,些,些情况下,,,,也可以,根,根据计息,期,期数、终,值,值或现值,求,求解利率,(,(折现率,),),或根,据,据利率(,折,折现率),、,、终值或,现,现值求解,计,计息期数,。,。,(一)利,率,率,r,的计算,计算利率,r,时,可以,首,首先列出,终,终值或现,值,值的计算,公,公式,然,后,后通过求,解,解方程式,的,的方法将,未,未知数,r,求出来。,首,首先根据,已,已知的条,件,件计算出,终,终值或现,值,值的换算,系,系数:,插值法,Excel,财务函数,例,2,9,假设你现,在,在在银行,存,存入,10 000,元,问折,现,现率为多,少,少才能保,证,证在以后,的,的,10,年中每年,年,年末都能,够,够从银行,取,取出,2 000,元?,从年金现,值,值表中可,以,以看出,,在,在,n=10,的各系数,中,中,,r=14%,时,系数,是,是,5.216,;,r=16%,时,系数,是,是,4.833,,可见利,率,率应在,14%16%,之间。,设,X,为超过,14%,的百分数,,,,则可用,插,插值法计,算,算,X,值如下:,(二)计,息,息期数,n,的计算,在已知终,值,值、现值,、,、利率的,情,情况下,,即,即可求出,计,计息期数,,其基,本,本方法同,利,利率(折,现,现率)的,确,确定方法,相,相同。在,实,实务中通,常,常是利用,Excel,软件进行,计,计算。,第二节,利,利率决,定,定因素,利率报价与调整,一,利率构成,二,利率的期限结构,三,一、利率,报,报价与调,整,整,在实务中,,,,金融机,构,构提供的,利,利率报价,为,为名义的,年,年利率,,通,通常记作,APR,(,Annual Percentage Rate,)。 通,常,常将以年,为,为基础计,算,算的利率,称,称为,名义年利,率,率,APR,,将名义,年,年利率按,不,不同计息,期,期调整后,的,的利率称,为,为,有效利率,EAR,(,Effective AnnualRate,)。,设,1,年复利次,数,数为,m,次,名义,年,年利率,APR,为,rnom,,则有效,利,利率,EAR,的调整公,式,式为:,频率,m,r,nom,/m,EAR,按年计算,1,6.000%,6.00%,按半年计算,2,3.000%,6.09%,按季计算,4,1.500%,6.14%,按月计算,12,0.500%,6.17%,按周计算,52,0.115%,6.18%,按日计算,365,0.016%,6.18%,连续计算,0,6.18%,以,APR,为,6%,为例,不,同,同复利次,数,数的,EAR,如表,2-1,所示。,表,2-1,不同复利,次,次数的,EAR,上表表明,,,,如果每,年,年复利一,次,次,,APR,和,EAR,相等;随,着,着复利次,数,数的增加,,,,,EAR,逐渐趋于,一,一个定值,。,。从理论,上,上说,复,利,利次数可,以,以为无限,大,大的值,,当,当复利间,隔,隔趋于零,时,时即为连,续,续复利,(continuouscompounding),,此时:,例,2,10,假设你刚,刚,刚从银行,取,取得了,250000,元的房屋,抵,抵押贷款,,,,年利率,12%,,贷款期,为,为,30,年。银行,给,给你提供,了,了两种还,款,款建议:,(,(,1,)在未来,30,年内按年,利,利率,12%,等额偿还,;,;(,2,)在未来,30,年内按月,利,利率,1%,等额偿还,。,。,(,1,)如果按年偿还,则每年偿还额(,P/A,,,12%,,,30,),=250 000=PV,,,,即每年偿还额为,31 037,元(,250 000,8.055,)。,(,2,)如果按,月,月偿还,,月,月利率为,1%,,共有,360,个月(,30,12,),则每,月,月偿还额,(,P/A,,,1%,,,360,),=250000,元,=PV,,,,即每月,偿,偿还额为,2 572,元(,250000/97.218,)。,第(,2,)种偿还,方,方式可使,每,每年偿还,额,额降低,173,元(,31 037,12,2 572,)。,如果选择,按,按月,支付,1%,,那么有,效,效利率不,是,是,12%,,而是,12.68%,,每年的,利,利息支出,高,高出了,0.68,个百分点,。,。,二、利率,构,构成,一般情况,下,下,利率,由,由以下三,大,大主要因,素,素构成,,即,即真实无,风,风险利率,RRFR,(,RealRisk-Free Rate,)、预期,通,通货膨胀,率,率,I,(,Inflation,)及风险,溢,溢价,RP,(,RiskPremium,)。用公,式,式可以表,示,示为:,利率,r=,真实无风,险,险利率,+,预期通货,膨,膨胀率,+,风险溢价,利率,r=,基准利率,+,风险溢价,(一)真,实,实无风险,利,利率与名,义,义无风险,利,利率,真实无风,险,险利率,是指无通,货,货膨胀、,无,无风险时,的,的均衡利,率,率,即货,币,币的时间,价,价值,反,映,映了投资,者,者延期消,费,费要求的,补,补偿。,名义无风,险,险利率,(,nominalrisk-free rate,NRFR),是指无违,约,约风险、,无,无再投资,风,风险的收,益,益率,在,实,实务中,,名,名义无风,险,险利率就,是,是与所分,析,析的现金,流,流量期限,相,相同的零,息,息政府债,券,券利率。,名义无风,险,险利率,=,(,1+,真实无风,险,险利率),(,1+,预期通货,膨,膨胀率),1,根据上式,,,,一项投,资,资的真实,无,无风险利,率,率如下:,(二)风,险,险溢价,基准利率,与,与有效利,率,率之间的,利,利差不是,由,由经济因,素,素造成的,,,,而是由,产,产生不同,风,风险溢价,的,的不同资,产,产的基本,特,特征引起,的,的。以债,券,券为例,,风,风险溢价,可,可从五个,方,方面进行,分,分析:债,券,券信用质,量,量、债券,流,流动性、,债,债券到期,期,期限、契,约,约条款和,外,外国债券,特,特别风险,。,。在这五,个,个因素中,,,,债券信,用,用质量和,到,到期期限,对,对公司债,券,券风险溢,价,价的影响,最,最大。,(,1,)债券信,用,用质量,(,(,2,)流动性,风,风险,(,(,3,)期限风,险,险 (,4,)税收和,债,债券契约,条,条款,(,(,5,)外国债,券,券特别风,险,险,三、利率,期,期限结构,不同期限,债,债券与利,率,率之间的,关,关系,称,为,为利率的,期,期限结构,(theterm structureof interestrate),。在市场均衡,情,情况下,借款,者,者的利率与贷,款,款者的收益率,是,是一致的,因,此,此,利率的期,限,限结构也可以,说,说是收益率的,期,期限结构。,三、利率期限,结,结构,(一)即期利,率,率,假设有一笔在,时,时点,1,支付,1,元钱的简单贷,款,款,则这笔贷,款,款的现值为:,这里是用一个,对,对于,1,年期贷款的适,当,当利率水平,r1,来对现金流进,行,行折现,这一,利,利率通常被称,为,为当前的,1,年期即期利率,(,(,spot rate,)。使用即期,利,利率表示,可,以,以假设有一笔,贷,贷款,要求必,须,须在时点,1,和时点,2,分别支付,1,美元,则其现,值,值应为:,即第,1,个期间的现金,流,流是用当前的,1,年期即期利率,折,折现,而第,2,个期间的现金,流,流要用当前的,2,年期即期利率,折,折现。,一系列的即期,利,利率,r,1,、,r,2,等正是利率期,限,限结构(,term structure,)的一种表示,方,方法。,三、利率期限,结,结构,(一)即期利,率,率,给定期限的零,息,息债券(,zero couponbond,)的收益率就,是,是该期限内的,即,即期利率。由,于,于一种期限的,即,即期利率是单,一,一的,即期利,率,率可以准确地,反,反映货币的时,间,间价值。在任,何,何一个时点,,资,资本需求和资,本,本供给共同决,定,定了每个期限,的,的即期利率,,这,这个即期利率,可,可以用来为各,种,种未来现金流,量,量定价。,理解这一问题,的,的方法是把附,息,息债券(国库,券,券)看做一组,零,零息债券的组,合,合,各期收到,的,的利息就是到,期,期价值与所付,价,价值间的差额,。,。,三、利率期限,结,结构,例如,面值为,1 000,元、息票率为,5%,、,5,年期的附息国,库,库券,可以看,成,成,5,张零息债券:,第,第一张的到期,价,价值为,50,元,,1,年后到期;第,二,二张的到期价,值,值为,50,元,,2,年后到期,最,最后一张的到,期,期价值为,1 050,元,,5,年后到期。显,然,然,对于每种,有,有息债券,它,的,的价值等于其,组,组成的零息债,券,券的价值之和,。,。假设有一张,不,不能提前赎回,的,的,2,年期债券,面,值,值,1 000,元,息票率为,5%,,目前市场报,价,价为,914.06,元,则债券的,现,现值可写为:,假设,r,1,=8%,,则,2,年期零息债券,的,的利率为:,即期利率或零,息,息债券收益率,为,为,10%,,高于第,1,期的即期利率,。,。,(二)远期利,率,率,即期利率适用,于,于贷款等现在,投,投资而在以后,偿,偿还的债务合,约,约,而远期利,率,率则是现在签,订,订合约在未来,借,借贷一定期限,资,资金时使用的,利,利率。,即期利率与远,期,期利率之间的,关,关系如下式所,示,示:,其中:,f,n,表示,n,年后的远期利,率,率;,r,n,表示,n,年的即期利率,;,;,r,n,-1,表示,n-1,年的即期利率,。,。,假设投资者面,临,临两种可选择,的,的投资策略:,(,(,1,)投资于一张,面,面值为,100,元、年利率(,折,折现率)为,10%,的,2,年期零息债券,;,;(,2,)投资于一张,面,面值为,100,元、年利率为,8%,的,1,年期债券,同,时,时签订一个远,期,期合约,以远,期,期利率,f,1,在,1,年后再投资于,一,一张,1,年期的零息债,券,券。,对于第(,1,)种选择,面,值,值为,100,元的两年期零,息,息债券的现值,为,为,82.64,元,也就是说,,,,将,82.64,元投资,2,年,每年利率,为,为,10%,,,2,年后可得到,100,元。事实上,,一,一个,2,年期债券的支,付,付可以看成是,以,以两个潜在的,不,不同利率投资,2,年的结果。这,样,样,在第(,2,)种选择中,,开,开始投入的,82.64,元在第,1,年年末为,82.64,(,1+r,1,),在第,2,年年末为,82.64,(,1+r,1,)(,1+f,2,)。如果第,1,年的利率为,8%,,,2,年后的投资所,得,得是,100,元,则远期利,率,率,f,2,:,即期利率与远,期,期利率的关系,可,可用下式描述,:,:,即期利率是远,期,期利率的几何,平,平均数,而远,期,期利率可以看,成,成是未来某一,段,段时期借款或,贷,贷款的边际成,本,本。,利率的期限结,构,构可根据收益,率,率曲线进行分,析,析,图,2-2,描绘了四种假,设,设国库券收益,率,率曲线的形状,。,。,图,2-2,国库券收益率,曲,曲线图,第三节,Excel,时间价值函数,Excel时间价值函数的基本模型,一,现值、终值及其它变量计算举例,二,混合现金流的现值与折现率,三,一、,Excel,时间价值函数,基,基本模型,Excel,电子表格程序,输,输入公式,求解变量,输入函数,计算终值:,FV,=,FV(Rate,Nper,Pmt,PV,Type),计算现值:,PV,=,PV(Rate, Nper, Pmt, FV, Type),计算每期等额现金流量:,PMT,=,PMT (Rate,Nper,PV,FV,Type),计算期数:,n,=,NPER(Rate, Pmt, PV, FV, Type),计算利率或折现率:,r,= RATE,(,Nper, Pmt, PV, FV, Type,),如果现金流量,发,发生在每期期,末,末,则“,type”,项为,0,或忽略;,如果现金流量,发,发生在每期期,初,初,则“,type”,项为,1,。,利用,Excel,计算终值和现,值,值应注意的问,题,题:,1.,现金流量的符,号,号问题,在,FV,,,PV,和,PMT,三个变量中,,其,其中总有一个,数,数值为零,因,此,此在每一组现,金,金流量中,总,有,有两个异号的,现,现金流量。,2.,如果某一变量,值,值为零,输入,“,“,0”,或省略。,【,例,】,计算一个等额现金流量为,4 000,元,计息期为,6,年,利率为,7%,的年金终值。,3.,如果某一变量,值,值(在输入公,式,式两个变量之,间,间)为零,也,可,可以“,”代,替,替。,【,例,】,假设你持有现金,1 200,元,拟进行一项收益率为,8%,的投资,问经过多少年可使资本增加一倍,?,4.,在使用函数时,,,,函数名与其,后,后的括号“(,”,”之间不能有,空,空格;当有多,个,个参数时,参,数,数之间要用逗,号,号“,”分隔,;,;参数可以是,数,数值、文本、,逻,逻辑值、单元,格,格地址或单元,格,格区域地址,,也,也可以是各种,表,表达式或函数,;,;函数中的逗,号,号、引号等都,是,是半角字符,,而,而不是全角字,符,符。,5.,对表输入公式,不,不熟悉,可在,Microsoft Excel,电子表格中,,点,点击菜单栏中,的,的“,fx”,项,在“粘贴,变,变量”对话框,中,中点击“财务,”,”,在 “变,量,量名”中点击,需,需要计算的变,量,量,点击“确,定,定”后,即可,根,根据对话框中,的,的提示进行操,作,作,求解变量,值,值。,二、现值、终,值,值及其他变量,计,计算举例,Rate,Nper,PMT,FV,Type,PV,Excel,函数公式,已知,0.12,5,0,-800,0,求,PV,453.94,=PV(0.12,5,0,-800,0),表,2-3,复利现值计算,举,举例,假设某投资项,目,目预计,5,年后可获得收,益,益,800,万元,按年折,现,现率,12%,计算,问这笔,收,收益的现在价,值,值是多少?采,用,用,Excel,财务函数计算,如,如下:,Rate,Nper,PMT,PV,Type,FV,Excel,函数公式,已知,0.1,3,-100,0,0,求,FV,331,=FV(0.1,3,-100,0,0),假设某项目在,3,年建设期内每,年,年年末向银行,借,借款,100,万元,借款年,利,利率为,10%,, 问项目竣,工,工(即第,3,年年末)时应,该,该支付给银行,的,的本利和总额,是,是多少,?,采用,Excel,财务函数计算,如,如下: :,表,2-4,年金终值计算,举,举例,Nper,PMT,PV,FV,Type,Rate,Excel,函数公式,已知,10,2000,-10 000,0,0,求,Rate,15.1%,=RATE(10,2000,-10000,0,0),假设你现在向,银,银行存入,10 000,元钱,问折现,率,率为多少时,,才,才能保证在以,后,后的,10,年中每年年末,都,都能够从银行,取,取出,2 000,元?采用,Excel,财务函数计算,如,如下:,表,2-5,利息率计算举,例,例,三、混合现金,流,流量的现值与,折,折现率,Excel,财务函数,NPV,功能:基于一系列现金流和固定的各期贴现率,返回一项投资的净现值。,输入方式:,NPV,(,Rate,,,Value1,,,Value2,,,),【,例,2-,14,】,假设某投资项,目,目在未来,4,年的年末分别,产,产生,90,元、,100,元、,110,元、,80,元确定的现金,流,流量,初始投,资,资,300,元,折现率为,8%,,计算该项目,的,的净现值。,Value1,Value2, ,所属各期的长,度,度必须相等,,且,且现金流均发,生,生在期末,在计算净现值,时,时,应将项目,未,未来现金流量,用,用,NPV,函数求出的现,值,值再减去该项,目,目的初始投资,的,的现值,Rate,Value1,Value2,Value3,Value4,NPV,Excel,函数公式,已知,0.08,90,100,110,80,求,NPV,15.19,=NPV(0.08,,,90,,,100,,,110,,,80),300,Excel,财务函数,IRR,功能:返回由数值代表的一组现金流量的内部收益率。,输入方式:,IRR,(,Values,,,Guess,),【,例,2-,15,】,假设某公司支,付,付,200,万元购买一台,设,设备,预计使,用,用,5,年。设备投,入,入使用后每,年,年预计现金,净,净流量分别,为,为,30,、,50,、,60,、,80,、,60,万元。计算,该,该项目的投,资,资内部收益,率,率。,这些现金流,量,量不一定必,须,须是均衡的,,,,但他们必,须,须按固定的,时,时间间隔发,生,生。,Value1,Value2,Value3,Value4,Value5,Value6,IRR,Excel,函数公式,已知,-200,30,50,60,80,60,求,IRR,10.96%,=IRR(B2,:,G2),本章小结,1,时间轴,就是能够表,示,示各个时间,点,点的数轴;,单利,和,复利,是两种不同,的,的利息计算,体,体系。在单,利,利情况下,,只,只有本金计,算,算利息,利,息,息不计算利,息,息;而在复,利,利情况下,,除,除本金计算,利,利息之外,,每,每经过一个,计,计息期所得,到,到的利息也,要,要计算利息,,,,逐期滚算,,,,俗称,“,利滚利,”,。,2,现值,是一个或多,个,个发生在未,来,来的现金流,相,相当于现在,时,时刻的价值,,,,用,PV,表示;,终值,是一个或多,个,个现在发生,或,或未来发生,的,的现金流相,当,当于未来时,刻,刻的价值,,用,用,FV,表示。,本章小结,3,单一支付,款,款项是指在,某,某一特定时,间,间内只发生,一,一次的简单,现,现金流量;,系,系列支付款,项,项是指在,n,期内多次发,生,生现金流入,或,或现金流出,。,。,年金,是系列支付,款,款项的特殊,形,形式,是在,一,一定时期内,每,每隔相同时,间,间(如一年,),)发生相同,金,金额的现金,流,流量。可以,分,分为,普通年金,、,预付年金,、,递延年金,和,永续年金,等形式。,4,货币时间,价,价值中最常,用,用的是终值,F,和现值,P,的计算;但,在,在某些情况,下,下,也可以,根,根据计息期,数,数、终值或,现,现值求解利,率,率(折现率,),),或根据,利,利率(折现,率,率)、终值,或,或现值求解,计,计息期数。,本章小结,6,在实务中,,,,金融机构,提,提供的利率,报,报价为,名义的年利,率,率,,通常记作,APR,。如果年复,利,利期数大于,1,,如每半年,、,、每季度或,每,每月复利一,次,次,则按不,同,同计息期计,算,算的现值或,终,终值就会发,生,生很大差别,。,。通常将以,年,年为基础计,算,算的利率称,为,为,名义年利率,APR,,将名义年,利,利率按不同,计,计息期调整,后,后的利率称,为,为,有效利率,EAR,。,5,金融机构,提,提供的利率,报,报价有可能,和,和我们使用,的,的利率有不,同,同的时间间,隔,隔,如按月,、,、半年计息,等,等,所以有,必,必要对利率,进,进行调整,,以,以使其与现,金,金流量发生,的,的时期相匹,配,配。,本章小结,8,不同期限,债,债券与利率,之,之间的关系,,,,称为,利率的期限,结,结构,。在市场均,衡,衡情况下,,借,借款者的利,率,率与贷款者,的,的收益率是,一,一致的,因,此,此,利率的,期,期限结构也,可,可以说是收,益,益率的期限,结,结构。利率,的,的期限结构,可,可根据收益,率,率曲线进行,分,分析。,7,一般情况,下,下,利率由,以,以下三大主,要,要因素构成,,,,即,真实无风险,利,利率,RRFR,、,预期通货膨,胀,胀率,I,及,风险溢价,RP,。以债券为,例,例,风险溢,价,价可分解为,五,五个方面:,债,债券信用质,量,量、债券流,动,动性、债券,到,到期期限、,契,契约条款和,外,外国债券特,别,别风险。,本章小结,10,在变量输,入,入过程中,,需,需要注意以,下,下五个问题,:,:第一,现,金,金流量的符,号,号问题;第,二,二,如果某,一,一变量值为,零,零,可直接,输,输入,“,0,”,或省略;第,三,三,如果某,一,一变量值(,在,在输入公式,两,两个变量之,间,间)为零,,也,也可以,“,,,”,代替;第四,,,,在使用函,数,数时,变量,的,的输入格式,问,问题;第五,,,,可以使用,MicrosoftExcel,电子表格中,财,财务函数的,“,变量名,”,帮助求解变,量,量值。,9,Excel,电子表格程,序,序通常包含,五,五个变量:,PV,、,FV,、,PMT,(,A,)、,RATE(r),、,NPER(n),。在这五个,变,变量中,只,要,要输入四个,变,变量值,就,可,可以计算第,五,五个变量。,基本训练,1,假设你购,买,买彩票中了,奖,奖,获得一,项,项奖励。可,供,供选择的奖,金,金方式有:,(,(,1,)立刻领取,100 000,元;(,2,)第,5,年末领取,180 000,元;(,3,)每年领取,11 400,元,不限期,限,限;(,4,)今后,10,年每年领取,19 000,元;(,5,)第,2,年领取,6 500,元,以后每,年,年增加,5%,,不限期限,。,。如果利率,为,为,12%,的话,你会,选,选择哪种领,取,取奖金的方,式,式?,基本训练,2,在我国,,个,个人住房贷,款,款可以采用,等,等额本息偿,还,还法和等额,本,本金偿还法,两,两种。前者,又,又称等额法,,,,即借款人,每,每月以相等,的,的金额偿还,贷,贷款本息;,后,后者又称递,减,减法,即借,款,款人每月等,额,额偿还本金,,,,贷款利息,随,随本金逐月,递,递减,还款,额,额逐月递减,。,。一项调查,表,表明,许多,借,借款者认为,等,等额本息法,支,支付的利息,多,多于等额本,金,金法,因此,,,,选择等额,本,本金法有助,于,于降低购房,成,成本。请根,据,据本章所学,知,知识,回答,以,以下问题:,(,(,1,)两种还款,方,方式发生差,异,异的原因是,什,什么?在什,么,么条件下两,种,种方式付款,总,总额相等?,(,(,2,)不同的还,款,款方式有什,么,么特点?主,要,要适用于哪,种,种收入人群,?,?假设你正,在,在申请银行,按,按揭,你将,选,选择哪一种,还,还款方式?,基本训练,3.,王,先,先,生,生,计,计,划,划,将,将,100000,元,投,投,资,资,于,于,政,政,府,府,债,债,券,券,,,,,投,投,资,资,期,期,至,至,少,少,为,为,4,年,,,,,这,这,种,种,债,债,券,券,到,到,期,期,一,一,次,次,还,还,本,本,付,付,息,息,。,。,你,你,作,作,为,为,他,他,的,的,投,投,资,资,顾,顾,问,问,,,,,会,会,给,给,他,他,提,提,供,供,何,何,种,种,建,建,议,议,?,?,有,有,关,关,资,资,料,料,如,如,下,下,所,所,示,示,:,:,(,1,),根,根,据,据,以,以,上,上,资,资,料,料,,,,,你,你,认,认,为,为,王,王,先,先,生,生,有,有,多,多,少,少,种,种,投,投,资,资,选,选,择,择,?,?,至,至,少,少,列,列,出,出,5,种,投,投,资,资,组,组,合,合,。,。,(,2,),根,根,据,据,(,(,1,),的,的,结,结,论,论,,,,,王,王,先,先,生,生,在,在,每,每,种,种,选,选,择,择,中,中,的,的,投,投,资,资,价,价,值,值,(,(,本,本,金,金,加,加,利,利,息,息,),),是,是,多,多,少,少,?,?,假,假,设,设,收,收,益,益,率,率,曲,曲,线,线,保,保,持,持,不,不,变,变,。,。,(,3,)假设,王,王先生,投,投资于,一,一个,5,年期债,券,券,在,第,第,4,年年末,出,出售该,债,债券,,债,债券的,出,出售价,应,应为多,少,少?如,果,果王先,生,生在第,4,年年末,需,需要现,金,金,123000,元,这,一,一投资,选,选择能,否,否满足,他,他的要,求,求?请,列,列示计,算,算过程,。,到期日,1,年,2,年,3,年,4,年,5,年,利率,4.00%,4.35%,4.65%,4.90%,5.20%,基本训,练,练,4.ABC,公司正,在,在整理,一,一项财,务,务计划,,,,这项,计,计划将,涉,涉及公,司,司未来,三,三年的,活,活动,,需,需要预,测,测公司,的,的利息,费,费用及,相,相应的,税,税收节,减,减。公,司,司最主,要,要的债,务,务是其,分,分期偿,还,还的房,地,地产抵,押,押贷款,。,。这笔,贷,贷款额,为,为,85000,元,年,利,利率为,9%,,按月,付,付息,,偿,偿还期,为,为,2,年。根,据,据与银,行,行签订,的,的贷款,条,条款规,定,定,这,笔,笔抵押,贷,贷款的,月,月利率,应,应按下,式,式计算,:,:,其中,,r,为年利,率,率。,要求:,(,1,)根据,Excel,财务函,数,数计算,月,月有效,利,利率、,抵,抵押贷,款,款月偿,还,还额(,分,分别列,示,示每月,利,利息和,月,月本金,偿,偿还额,),)、每,期,期期初,和,和期末,贷,贷款余,额,额(只,计,计算前,三,三年的,贷,贷款偿,还,还额),。,。,(,2,)计算,利,利率分,别,别为,9%,、,9.5%,、,10%,、,10.5%,、,11%,时每月,的,的贷款,偿,偿还额,。,。,基本训,练,练,5.,随着折,现,现率的,增,增加,,现,现值是,以,以不变,的,的速度,减,减少、,以,以递减,的,的速度,减,减少,,还,还是以,递,递增的,速,速度减,少,少?为,什,什么?,随,随着未,来,来款项,收,收到的,时,时间点,往,往后推,移,移,现,值,值是以,不,不变的,速,速度减,少,少、以,递,递减的,速,速度减,少,少,还,是,是以递,增,增的速,度,度减少,?,?为什,么,么?,ThankYou!,演讲完,毕,毕,谢,谢,谢观看,!,!,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 幼儿教育


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!