资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,1,2,导数的计算,1,2.1,几个常用函数的导数,本节重点:几个常见函数的导数,本节难点:函数导数的求法及常见函数导数的应用,我们知道,导数的几何意义是曲线在某一点处的切线的斜率,物理意义是运动物体在某一时刻的瞬时速度那么,对于函数,y,f,(,x,),,如何求它的导数呢?,原函数,导函数,f,(,x,),c,f,(,x,),f,(,x,),x,f,(,x,),f,(,x,),x,2,f,(,x,),f,(,x,),f,(,x,),f,(,x,),f,(,x,),0,1,2,x,几个常用函数的导数,例,1,求函数,f,(,x,),2,的导数,解析,2,为常数,,f,(,x,),0.,点评,是常数,不是变量,分析,先利用导数公式求得斜率,再求切线方程,分析,只需求出,K,、,Q,两点的横坐标即可,点评,x,轴上两点间的距离公式,d,|,x,2,x,1,|.,曲线,y,x,3,在点,(1,1),处的切线与,x,轴、直线,x,2,所围成的三角形的面积为,_,一、选择题,1,函数,f,(,x,),3,x,2,在,x,1,处的导数为,(,),A,2,B,3,C,6,D,12,答案,C,解析,f,(,x,),6,x,,,f,(1),6,1,6.,2,一个物体的运动方程为,s,(,t,),1,t,t,2,,其中,s,的单位是米,,t,的单位是秒,那么物体在,3,秒末的瞬时速度是,(,),A,7,米,/,秒,B,6,米,/,秒,C,5,米,/,秒,D,8,米,/,秒,答案,C,解析,v,(,t,),s,(,t,),1,2,t,,,v,(3),1,2,3,5(,米,/,秒,),,故选,C.,答案,D,二、填空题,4,y,0,表示函数,y,c,图象上每一点处的切线斜率都为,_,答案,0,解析,由,y,(,c,),0,及导数的几何意义可知切线斜率都为,0.,即当,b,2,时,切点为,(1,1),;,当,b,2,时,切点为,(,1,,,1),
展开阅读全文