资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,高等院校非数学类本科数学课程,一元微积分学,大 学 数 学,(,一,),第三十讲 一元微积分的应用(六),脚本编写:刘楚中,教案制作:刘楚中,微积分在物理中的应用,第七章 常微分方程,本章学习要求:,了解微分方程、解、通解、初始条件和特解的概念,.,了解下列几种一阶微分方程:变量可分离的方程、齐次方,程、一阶线性方程、伯努利(,Bernoulli,)方程和全微分,方程,.,熟练掌握分离变量法和一阶线性方程的解法,.,会利用变量代换的方法求解齐次方程和伯努利方程,.,知道下列高阶方程的降阶法:,了解高阶线性微分方程阶的结构,并知道高阶常系数齐线,性微分方程的解法,.,熟练掌握二阶常系数齐线性微分方程的解法,.,掌握自由项(右端)为多项式、指数函数、正弦函数、余,弦函数以及它们的和或乘积的二阶常系数非齐线性微分方,程的解法,.,第四节 二阶常系数线性微分方程,一、高阶线性微分方程的一般理论,二、二阶常系数齐线性微分方程的解,三、二阶常系数非齐线性微分方程的解,一、高阶线性微分方程的一般理论,n,阶线性方程的一般形式为,二阶线性微分方程的一般形式为,通常称,(2),为,(1),的相对应的齐方程。,我们讨论二阶线性方程的一般理论,所得结论可自然推广至,n,阶线性方程中。,1.二阶齐次线性微分方程的性质和解的结构,(1)叠加原理,的解,则它们的线性组合,也是方程(2)的解,,你打算怎么证明这个原理?,证,的解,则它们的线性组合,也是方程(2)的解。,推 广,在什么情况下,叠加所得可以成为方程,(2),的通解?,(2)线性无关、线性相关,例,证,由三角函数知识可知,这是不可能的,故,例,证,朗斯基(Wronsky)行列式,朗斯基行列式可以推广到,n,个函数的情形。,例,(3)二阶齐线性微分方程解的结构,定理 1,的两个线性无关的解,则,是方程,(2),的通解。,定理 2,例,解,又容易看出:,而,由叠加原理,原方程的通解为,问题:,该问题的解决归功于数学家刘维尔。,代入方程中,得,怎么做?,关于,z,的一阶线性方程,即,故有,两边积分,得,关于,z,的一阶线性方程,刘维尔公式,为原方程的通解。,则,例,解,由刘维尔公式,故原方程的通解为,2.二阶非齐线性微分方程解的结构,(1)解的性质,性质 1,的一个特解,则,是原方程的一个特解。,性质 2,的一个特解,则,是方程,的一个特解。,性质 3,是其对应的齐方程,的一个特解。,性质 4,的一个特解。,可以直接验证性质1性质4。,如何求特解?,定理 3,的通解,则,是方程,(1),的通解。,由性质1 以及通解的概念立即可以得知该定理成立。,常数变易法,常数变易法,常数变易法,则有,令,以下推导的前提,于是,对上式两边关于,x,求导,得,这两部分为零。,即,联立,(3)、(4),构成方程组,解此方程组,再积分,并取积分常数为零,即可得到,例,解,该方程所对应的齐方程为,它就是我们刚刚讲过的例题,由刘维尔公式得其通解为,由常数变易法,解方程组,两边积分,取积分常数为零,得,两边积分,取积分常数为零,得,故原方程有一特解,从而,原方程的通解为,在这一节中所讲述的理论均可推广到,n,阶线性微分方程中去。,参考书:,北京大学、复旦大学、中山大学等编写的,常微分方程教材,
展开阅读全文