资源描述
1.2.2,数轴,5,0,-10,一、情景引入,0,1,2,3,4,-1,-2,-3,-4,-5,(,1,),图中的,0,点,,相当于,0,0,C,或出发点的点,叫做,原点,;,(,2,)规定了,正方向,。,图中从原点向右为正方向,向左为负方向。,(,3,)选取了适当长度作为,单位长度,,,相当于温度计的,1,0,C,占,1,小格的长度。,数轴,将温度计倒过来,它又发生了什么变化?,0,1,2,3,4,-1,-2,-3,-4,-5,象这样,规定了原点、正方向和单位长度,的直线,叫做,数轴,.,通常称,原点,、,正方向,和,单位长度,为数轴的三要素,数轴的画法:,0,1,2,3,-1,-2,-3,-4,4,0,5,10,15,-5,-10,-15,-20,20,1,、画一条水平直线,规定直线上向右的方向为,正方向。,2,、在直线上取一点,0,叫,原点。,3,、选取一长度作为,单位长度,,就得到了,数轴,。,判断下列各图,哪个是数轴,哪个不是数轴。,0,1,2,3,-1,-2,-3,-4,4,0,1,2,3,-1,-2,-3,-4,4,0,1,2,3,-1,-2,-3,-4,4,(,1,),(,2,),(,3,),(,4,),1,2,3,-1,-2,-3,-4,4,(,5,),0,15,30,45,-15,-30,-45,-60,60,(,6,),(,不是,),(,不是,),(,不是,),(,不是,),(,不是,),(,是,),画数轴时要注意以下四点,:,三要素缺一不可,数轴是一条直线,不是线段或射线,5.,根据需要选取适当单位长度,6.,单位长度要一致,不漏画原点,不漏画箭头,例,2,、写出下面数轴上的,A,、,B,、,C,、,D,、,E,、,F,各点表示的数。,把数轴上的点用数表示,数轴上的点,数,0,1,2,-1,-2,A,B,C,D,E,F,解:,点,A,表示,2,;,点,B,表示,-1,;,点,D,表示,1.5,;,点,C,表示,0,;,点,E,表示,1,;,点,F,表示,-1.5,;,用数轴上的点表示数,例,3,、在数轴上画出表示下列各数的点:,1,,,-5,,,-2.5,,,7/2,,,0, 7/3,0,1,2,3,-1,-2,-3,-4,4,-5,1,-5,-2.5,7/2,0,7/3,数,数轴上的点,体现了,数形结合,的思想,在数轴上画出表示有理数的点,可以先由这个数的符号确定它在数轴上原点的哪一个方向,再在相应的方向上确定它与原点相距几个单位长度,.,概括,数轴上的点与有理数之间的关系:,所有的有理数都可以用数轴上的点来,表示,但数轴上的点并不都表示有理数。,练习:,下列语句正确的是,( ),A,数轴上的点只能表示整数,B,数轴上的一个点只能表示一个数,C,有一些分数不能用数轴上的点表示,D,两个不同的有理数有可能用数轴上的同一点表示,B,例,4,、在数轴上,到原点的距离等于,4,个单位长度的点所表示的数是( )。,A,、,+4,,,B,、,-4,,,C,、,+2,或,-2,。,D,、,+4,或,-4,0,1,2,3,-1,-2,-3,-4,4,D,0,1,2,3,-1,-2,-3,-4,4,练习:,在一条数轴上,点,A,表示,-2,,点,B,和点,A,距离,3,个单位长度,则点,B,表示的数是( ),A,、,1,A,C,、,1,或,-5,B,、,-5,D,、以上都不对,C,归纳,:,一般地,设数,a,是一个正数,则数轴上表示数,a,的点在原点的,_,边,与原点的距离是,_,个单位长度,表示,-a,的点在原点的,_,边,与原点的距离是,_,个单位长度。,a,a,左,右,课堂练习:,课本第,9,页练习第,2,题,做在练习本上,小结:,(,1,)一个概念三个要素;,(,2,)三个操作:,怎样画数轴;,怎样把数画在数轴上;,怎样把数轴上的点用数表示出来。,(,3,)一个思想:,数轴上数与点的对应,也叫,数形结合,。,思考题:,(1),一个点在数轴上表示的数是,-5,,这个点先向左边移动,3,个单位,然后再向右边移动,6,个单位,这时它表示的数是多少呢?,(2),如果按上面的移动规律,最后得到的点表示的数是,2,,则开始时它表示什么数?,作业:,1,:,学习与评价,P6,,,T1-10,2:,学习与评价,拓展训练,P9,,,T7,3,:课本,P14,,,T3,
展开阅读全文