格兰杰因果关系检验

上传人:wuxin****2020 文档编号:252951622 上传时间:2024-11-26 格式:PPT 页数:24 大小:306.50KB
返回 下载 相关 举报
格兰杰因果关系检验_第1页
第1页 / 共24页
格兰杰因果关系检验_第2页
第2页 / 共24页
格兰杰因果关系检验_第3页
第3页 / 共24页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,5.4 格兰杰因果关系检验,一、时间序列自回归模型,1,、自回归模型,时间序列自回归模型是指仅用它的过去值及随机干扰项所建立起来的模型,一般形式为:,p,为阶数,上式称为,p,阶自回归模型。,一般地,,p,阶自回归过程,AR(p),是:,(5.4.1),(5.4.2),如果随机扰动项,t,是一个白噪声序列,则称上式为一个纯,AR(p),过程,记为:,如果随机扰动项,t,不,是一个白噪声序列,则称上式为一个,q,阶的移动平均过程,MR(q),过程,记为:,(5.4.3),(5.4.4),将式,(5.4.2),和式,(5.4.4),结合,得到一个一般的自回归移动平均过程,ARMA(p,,,q),(5.4.5),式,(5.4.5),表明,一个随机时间序列可以通过一个自回归移动平均过程生成,即该序列可以由其自身的过去或滞后值以及随机扰动项来解释。如果该序列是平稳的,即它的行为不会随着时间的推移而变化,那么就可以通过该序列过去的行为来预测它的未来。,2,、,AR(p),模型的平稳性条件,如果一个,p,阶自回归模型,AR(p),生成的时间序列是平稳的,则该,p,阶自回归模型,AR(p),是平稳的。反之,则不是平稳的。,在,p,阶自回归模型,(5.4.3),中引入滞后算子,L,:,则,(5.4.3),式变换为:,记 ,则称多项式方程:,为,AR(p),的特征方程。如果该方程的所有根在单位圆外,/,根的模大于,1,,则,AR(p),模型是平稳的。,二、时间序列向量自回归模型,含有,k,个时间序列、,p,期滞后的向量自回归模型,VAR(p),可以表示为:,Y,t,是,k,维内生变量向量,,p,是滞后阶数,样本数目为,T,。,(5.4.6),其中,,A,1,A,2,A,p,是,k k,系数矩阵,t,N(0,),是,k,维随机扰动向量,它们之间可以同期相关,但不可以与自己的滞后值相关,也不与,(5.4.6),式右边的变量相关。,是的协方差矩阵,,t,是一个,k k,的正定矩阵。,向量自回归模型在建模过程中只需要明确两个量:一个是所含变量的个数,k,,即共有哪些变量是相互有关系的,并且需要把这些变量包括在模型中;一个是自回归的最大滞后阶数,p,,通过选择合理的,p,来使模型能反映出变量间相互影响的关系并使得模型的随机误差项是白噪声。,结构向量自回归模型,(SVAR),结构向量自回归模型中包含了变量间的当期关系。变量间的当期关系揭示了变量之间的相互影响,实质上是对向量自回归模型施加了基于经济理论分析的限制性条件,从而识别变量之间的结构关系。结构向量自回归模型每个方程左边是内生变量,右边是自身的滞后和其他内生变量的当期和滞后。,含有,k,个变量的结构向量自回归模型,SVAR(p),表示如下:,向量自回归模型是一种基于数据关系导向的非结构化模型,它主要通过实际经济数据而非经济理论来确定经济系统的动态结构,建模时无需提出先验理论假设。,三、格兰杰因果关系检验及其应用,1,、格兰杰因果关系检验的表述,若在包含了变量,X,和,Y,的过去信息的条件下,对变量,Y,的预测效果要优于单独由,Y,的过去信息对,Y,进行预测的效果,即变量,X,有助于解释变量,Y,的将来变化,则认为变量,X,是引致变量,Y,的格兰杰原因。,考察,X,是否影响变量,Y,的问题,主要看当期的,Y,能够在多大程度上被过去的,X,所解释,在,Y,t,方程中加入,X,的滞后值是否使解释程度显著提高。如果,X,有助于,Y,预测效果的提高,就可以认为,X,是,Y,的格兰杰原因。,对于两变量,Y,和,X,,格兰杰因果关系检验要求估计以下回归模型:,可能存在以下四种检验结果:,(,1,),X,对,Y,有单向影响,表现为,(5.4.7),式中,X,各滞后项前的参数整体不为零,而,(5.4.8),式中,Y,各滞后项前的参数整体为零。,(5.4.8),(5.4.7),(,2,),Y,对,X,有单向影响,表现为,(5.4.7),式中,Y,各滞后项前的参数整体不为零,而,(5.4.8),式中,X,各滞后项前的参数整体为零。,(,3,),X,与,Y,间存在双向影响,表现为,(5.4.7),式中,X,各滞后项前的参数整体不为零,同时,5.4.8),式中,Y,各滞后项前的参数整体也不为零。,(,4,),X,与,Y,间不存在双向影响,表现为,(5.4.7),式中,X,各滞后项前的参数整体为零,同时,5.4.8),式中,Y,各滞后项前的参数整体也为零。,格兰杰因果关系检验是通过受约束的,F,检验完成的。以,X,不是,Y,的格兰杰原因这一假设为例,即假设,(5.4.7),式中,X,各滞后项前的参数整体为零,分别做包含与不包含,X,各滞后项的回归,记前者残差平方和为,RSS,U,,后者残差平方和为,RSS,R,,再计算,F,统计量:,式中,,m,为,X,的滞后项的个数,,n,为样本容量,,k,为包含可能存在的常数项及其他变量在内的无约束回归模型的待估参数的个数。,如果计算的,F,值大于给定显著性水平,下,F,分布的相应临界值,F,(,m,n-k,),,则拒绝原假设,认为,X,是,Y,的格兰杰原因,。,2,、应用中需要注意的几个问题,滞后期长度选择问题,检验结果对于滞后期长度的选择比较敏感,不同的滞后期得到的检验结果可能不同。一般而言,需要进行不同滞后期长度下的检验,以得到比较稳健的结果,并根据模型中随机干扰项不存在序列相关时的滞后期长度来选取滞后期。,时间序列的平稳性问题,理论上格兰杰因果关系检验是针对平稳时间序列的,但实践上也适用于同阶单整非平稳时间序列。,样本容量问题,对于两个平稳序列而言,随着样本容量的增大,判断出存在格兰杰因果关系的概率显著增大。为了提高检验结果的可靠性,应尽可能使用较大的样本。,格兰杰因果关系检验是必要性条件检验,而不是充分性条件检验,格兰杰因果关系检验是统计意义上的,而不是经济意义上的。在统计意义上通过了格兰杰因果关系检验的时间序列,在经济行为上并不一定具有因果关系。所以,格兰杰因果关系检验必须建立在经济理论分析的基础之上。,例 根据表中,1980-2013,年中国居民消费总支出,(Y),和实际可支配收入,(X),的时间序列数据,计算,1981-2013,年中国实际总消费增长率,(GY),和实际可支配收入增长率,(GX),,并进行格兰杰因果关系检验,以检验消费推动了经济增长的理论假说。,D.W.=1.72,表明,随机干扰项不存在序列相关,所以格兰杰因果关系检验中选择滞后期为,1,是正确的。,如果是要检验消费支出对可支配收入的影响(注意:这里所依据的理论与前面研究可支配收入对消费的影响的理论不同),则应选择的滞后期应该为4!,D.W.=1.79,表明,随机干扰项不存在序列相关,所以格兰杰因果关系检验中选择滞后期为,4,是正确的。,样本大小对检验结果的影响,样本大小不一样,尽管滞后期相同,但检验结果也不 一样(拒绝“GX不是GY的格兰杰原因的显著性明显降低)。为了提高检验结果的可靠性,应尽可能地选择较大的样本。,例 根据表中,1980-2013,年中国居民实际总消费支出和实际可支配收入数据进行格兰杰因果关系检验,验证“消费拉动经济增长,经济增长增加居民可支配收入,居民可支配收入增加推动消费增长”的理论观点。,滞后,1,期,LM,检验,滞后,2,期,LM,检验,滞后,3,期,LM,检验,滞后,4,期,LM,检验,检验模型必须取滞后,4,期才能消除随机项的序列相关。,滞后,4,期的格兰杰因果关系检验,滞后,1,期的格兰杰因果关系检验,滞后,2,期的格兰杰因果关系检验,滞后,3,期的格兰杰因果关系检验,可见,滞后,4,期检验结果最显著,说明格兰杰因果关系检验时正确选择滞后期非常重要,!,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!