异方差的性质

上传人:xiao****1972 文档编号:252943130 上传时间:2024-11-26 格式:PPT 页数:48 大小:273.50KB
返回 下载 相关 举报
异方差的性质_第1页
第1页 / 共48页
异方差的性质_第2页
第2页 / 共48页
异方差的性质_第3页
第3页 / 共48页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第六章 异方差,异方差,一、异方差及其影响,二、假性异方差,三、异方差的发现和判断,四、异方差的克服和处理,引子:,更为接近真实的结论是什么?,根据四川省2000年21个地市州医疗机构数与人口数资料,分析医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。对模型估计的结果如下:,式中 表示卫生医疗机构数(个),表示人口数量(万人)。,模型显示的结果和问题,人口数量对应参数的标准误差较小;,t,统计量远大于临界值,可决系数和修正的可决系,数结果较好,,F,检验结果明显显著;,表明该模型的估计效果不错,可以认为人口数量,每增加1万人,平均说来医疗机构将增加5.3735人。,然而,这里得出的结论可能是不可靠的,平均说来每增加1万人口可能并不需要增加这样多的医疗机构,所得结论并不符合真实情况。,有什么充分的理由说明这一回归结果不可靠呢?更为接近真实的结论又是什么呢?,一、异方差及其影响,异方差可以表示为,或,即对于不同的样本点,随机误差项的方差不再是常,数,而互不相同,则认为出现了,异方差性,。,异方差产生的原因,普遍性:两类数据都有,横截面数据更多。,原因:,1.按照边错边改学习模型,人们在学习过程中,其行为误差随时间而减少。在这种情形下,方差 会逐渐变小。例如,随着打字练习小时数的增加,不仅平时打错的个数而且打错的方差都有所下降。,2.随着收入的增长,人们有更多的备用收入,从而如何支配他们的收入有更大的选择范围。因此,在作出储蓄对收入的回归时,很可能发现,由于人们对其储蓄行为有更多的选择,与收入俱增。因此,以增长为导向的公司比之于已发展定型的公司在红利支付方面也可能表现更多的变异。,异方差产生的原因,3.随着数据采集技术的改进,可能减小。例如,有精巧数据处理设备的银行,在他们对账户的每月或每季收支说明书中,比之于没有这种设备的银行,会出现更少的差错。,4.异方差还会异常值的出现而产生。,5.异方差还会因为模型的设定错误而产生。,案例分析,例,:截面资料下研究居民家庭的储蓄行为,Y,i,=,0,+,1,X,i,+,i,Y,i,:第,i,个家庭的储蓄额,X,i,:第,i,个家庭的可支配收入,高收入家庭:储蓄的差异较大,低收入家庭:储蓄则更有规律性,差异较小,i,的方差呈现单调递增型变化,二、假性异方差,有些定式误差也会表现出异方差的特征,例:真实关系为 ,其中,满足线性回归模型所有假设,包括,和 。,如果误以为模型为 ,那么,若记,则,异方差的危害,1、参数估计量非有效,OLS估计量仍然具有无偏性,但不具有有效性,因为在有效性证明中利用了,E(,)=,2,I,而且,在大样本情况下,尽管参数估计量具有,一致性,,但仍然不具有,渐近有效性。,2、变量的显著性检验失去意义,变量的显著性检验中,,构造了t统计量,其他检验也是如此。,3、模型的预测失效,一方面,由于上述后果,使得模型不具有良好的统计性质;,所以,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y的预测误差变大,降低预测精度,预测功能失效。,三、异方差的发现和判断,检验思路:,由于,异方差性,就是相对于不同的解释变量观测值,随机误差项具有不同的方差。那么:,检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的,相关性,及其相关的“,形式,”,。,(一)残差序列分析,(二)戈德菲尔德-夸特检验,(三)戈里瑟检验,(四)怀特检验,(一)残差序列分析,(a),(b),(c),(d),(e),(f),(二)戈德菲尔德-夸特检验,戈德菲尔德-夸特检验是最常用的异方差专门检验方法之一。这种方法适合于检验样本容量较大的线性回归模型的递增或递减型异方差性。,对于存在递增异方差模型,步骤:首先将样本按X值的大小顺序将观测值排列,然后略去居中的C个观测值,并将其余的(n-C)个观测值分成两组,每组(n-C)/2个,分别对两个子样本进行回归,并分别获得残差平方和,自由度都为(n-C)/2-K-1。,(二)戈德菲尔德-夸特检验,计算统计量:,如果 ,误差项存在明显的递增异方差性;,如果 ,误差项没有明显的异方差性。,(二)戈德菲尔德-夸特检验,对于递减异方差性模型,检验的方法相似,只要把前面构造的F统计量的分子分母互换,就可以用同样的程序检验模型是否存在递减型的异方差问题。,但该方法的有效性还依赖于C的选择,还有,当模型出现多于一个X变量时,就可以按任意一个X变量的大小顺序将观测值排列。,(三)戈里瑟检验,(三)戈里瑟检验,通常拟合 和 之间的回归模型:,根据图形中的分布选择,还可以拟合 和 之间的回归模型,(四)怀特检验,怀特检验是通过建立辅助回归模型的方式来判断异方差的。不妨设回归模型为三变量线性回归模型:,怀特检验的具体步骤为:,(1)估计回归模型,得到每一个残差的平方,(2)估计辅助回归模型:,即将残差平方关于所有解释变量的一次项、二次项和交叉乘积项进行回归。若继续引入高次项会使自由度下降,故一般只引入二次项。,(四)怀特检验,(3)得到辅助回归模型中的可决系数R的平方。可以证明,在同方差的假定下,即在原假设为:,渐进的有:,自由度q为辅助回归模型中解释变量的个数。,(4)对于给定的显著性水平,若 ,则拒绝原假设,模型存在异方差性,反之,则认为不存在异方差性。,(四)怀特检验,在Eviews中首先对原模型进行回归,然后在窗口中点击ViewResidual TestWhite Heteroskedasticity.,此时可选择是否包含交叉乘积项,若是原模型只包含一个解释变量,辅助回归模型中就没有交叉乘积项,若是含有两个及两个以上解释变量,就应选择含有交叉乘积项。,四、异方差的克服和处理,如线性回归模型为,经检验,误差项有如下异方差性,可以用 除模型各项,得到,四、异方差的克服和处理,新模型的误差项方差为,对新模型进行最小二乘估计的残差平方和,加权最小二乘法,加权最小二乘法,在上述公式中的 =,理解成权重,则构成了“加权最小二乘法”,例6-1,在研究某地区居民的储蓄倾向时,得到了如表61所示的数据资料。判断用线性回归模型研究居民储蓄倾向时,误差项是否存在异方差,并给出处理的方法。,n,储蓄S,收入i,n,储蓄,收入,n,储蓄,收入,1,2,3,4,5,6,7,8,9,10,11,264,105,90,131,122,107,406,503,431,588,898,8777,9210,9954,10508,10979,11912,12747,13499,14269,15522,16730,12,13,14,15,16,17,18,19,20,21,22,950,779,819,1222,1702,1578,1651,1400,1829,2200,2017,17663,18575,19635,21163,22880,24127,25604,26500,27670,28300,27430,23,24,25,26,27,28,29,30,31,2105,1600,2250,2420,2570,1720,1900,2100,2300,29560,28150,32100,32500,35250,33500,36000,36200,38200,I与S的散点图,对样本进行线性回归的结果,怀特检验结果,残差序列图,戈德菲尔德夸特检验,对第一个样本进行回归结果,戈德菲尔德夸特检验,对第二个样本进行回归结果,F749990.8/150867.94.97,这两个统计量的自由度都为11119,查表得显著性水平为0.05的临界值为F(9,9)3.18,而4.973.18,意味着两个残差平方和有显著差异,也就是原模型误差项有明显的异方差性。,戈里瑟检验,常数项不显著,去掉再回归,戈里瑟检验,戈里瑟检验,戈里瑟检验,由于根据残差序列图可看出回归残差的绝对值有随X线性增长的趋势,因此考虑直接对模型做变换为,S/I的残差序列图,S/i0.5的残差序列图,S/E的残差序列图,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!