资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,电压作用下电介质中产生的一切损耗称为介质损耗或介质损失。如果介质损耗很大,会使电介质温度升高,促使材料发生老化,如果介质温度不断上升,甚至会把电介质融化、烧焦,丧失绝缘能力,导致热击穿,因此,电介质损耗的大小是衡量绝缘介质电性能的一项重要指标。,然而不同设备由于运行电压、结构尺寸等不同,不能通过介质损耗的大小来衡量对比设备好坏。因此引入了介质损耗因数,tg,(又称介质损失角正切值)的概念。,介质损耗因数的定义是:,介质损耗因数,tg,只与材料特性有关,与材料的尺寸、体积无关,便于不同设备之间进行比较。,测量介质损耗因素的意义,测量介质损耗因素的意义,测量介质损耗因数,tg,判断电气设备的绝缘状况是一种传统的、十分有效的方法。它能反映出绝缘的一系列缺陷,如绝缘受潮,油或浸渍物脏污或劣化变质,绝缘中有气隙发生放电等。这时流过绝缘的电流中有功分量,IRX,增大了,,tg,也加大。,按照电力设备预防性试验规程的规定,对多种电力设备(如电力变压器、发电机组、高压开关、电压电流互感器、套管、耦合电容等)都需要做介质损耗因素(,tg,)的测量。,所以,tg,试验是一项必不可少而且非常有效的试验。能较灵敏地反映出设备绝缘情况,发现设备缺陷。,测量介质损耗因素的意义,测量介质损耗因素的意义,西林电桥,(如,QS1,),介质损耗,因数(,tg,)原理,介质损耗因数(,tg,)测量原理,电流比较仪电桥,(如,QS30,),数字型高压介损测试仪,(目前广泛使用的介损仪),介质损耗,因数(,tg,)原理,介质损耗因数(,tg,)测量原理,QS1,电桥是,80,年代以前广泛使用的现场介损测试仪器。试验时需配备外部标准电容器(如,BR16,型标准电容器),以及,10kV,升压器及电源控制箱。需要调节平衡,结果需要换算,使用不太方便。,介质损耗,因数(,tg,)原理,介质损耗因数(,tg,)测量原理,高压西林电桥是由:交流阻抗器、转换开关、检流计、高压标准电容器等组成。,调节,R3,、,C4,使电桥平衡,此时,a,、,b,两点电压幅值相位完全相等,即,R3,、,C4,两端电压相等。,介质损耗,因数(,tg,)原理,介质损耗因数(,tg,)测量原理,因为交流电路中电容阻抗为,电路中,R4,、,C4,的并联阻抗为两者倒数和的倒数,按阻抗元件分压原理,不难得到:,介质损耗,因数(,tg,)原理,介质损耗因数(,tg,)测量原理,经过运算,按复数相等实部、虚部分别相等的规定可得到:,按串连模型介损定义:由于,R4,是固定的,3184,,频率是,50Hz,、,C4,单位为,F,时,,tg=C4,,因此可以在,C4,刻度盘上读出介损,通过,R3,、,R4,、,Cn,可以计算,Cx,。,现场使用,QS1,电桥时,需要先将升压装置,标准电容器和电桥等进行连线,然后调节,R3,和,C4,,使得检流计指示为零。这时电桥平衡。读得,C4,值即为,tg,值,,R3,值经过计算可得出被试品电容值。总之现场操作使用都比较麻烦,抗干扰能力差,已经不能适应现在电气试验工作的需要。,介质损耗,因数(,tg,)原理,介质损耗因数(,tg,)测量原理,电流比较仪电桥的工作原理是采用安匝平衡的原理。平衡过程见右图,当交流电源加在试品、标准电容器和电桥及地之间,在试品上产生一个电流,Ix,,在标准电容器上也产生一个电流,In,,当两个电流流过,Wx,、,Wn,时,由于,Ix,、,In,两个电流的相位、幅值不相同,使,Wd,有电流,Id,产生,通过调整,Wx,、,Wn,、,C,、,R,使,Ix,、,In,两个电流的幅值相同,相位相反。,介质损耗,因数(,tg,)原理,介质损耗因数(,tg,)测量原理,数字高压介损测试仪基本测量原理是基于传统西林电桥的原理基础上,测量系统通过标准侧,R4,和被试侧,R3,分别将流过标准电容器和被试品的电流信号进行高速同步采样,经模数(,A/D,)转换装置测量得到两组信号波形数据,再经计算处理中心分析系统,分别得出标准侧和被试侧正弦信号的幅值、相位关系,从而计算出被试品的电容量及介损值。,介质损耗,因数(,tg,)原理,介质损耗因数(,tg,)测量原理,智能型电桥的测量回路还是一个桥体。,R3,、,R4,两端的电压经过,A/D,采样送到计算机,求得,:,进一步可求得被试品介损和电容量,介质损耗,因数(,tg,)原理,介质损耗因数(,tg,)测量原理,显示控制单元,人机界面,控制仪器的测量过程,可程控的电子调压,10kV,高压电源,产生测量用的高压电源一般可以从,0.5kV-10kV,连续平缓升压,测 量 部 分,完成对标准回路和被试回路电流信号实时同步采样,由计算机分析计算出,tg,及电容量。,介质损耗,因数(,tg,)测量方式,介质损耗因数(,tg,)测量方式,试品不接地,桥体,E,端接地,在需要屏蔽的场合,,E,端也可用于屏蔽。此时桥体处于地电位,,R3,、,C4,可安全调节。,各种介损测试仪器正接线接线方法基本一致。,介质损耗,因数(,tg,)测量方式,介质损耗因数(,tg,)测量方式,这是一种标准反接线接法,在试品接地,桥体,U,端接地,,E,端为高压端,在需要屏蔽的场合,,E,端也可用于屏蔽。此时桥体处于高电位,,R3,、,C4,需通过绝缘杆调节。,这种方式桥体处于高电位,仪器内部高低压之间需要做好绝缘防护措施。,介质损耗,因数(,tg,)测量方式,介质损耗因数(,tg,)测量方式,由于,C1,较,C2,电容量要小,所以测量,C2,时,,C1,与,Cn,串联等效的误差就比较大。为了减小这种测量误差,我们在测量,C2,的时候,以,C1,作为电桥的标准电容器,这样可测得,C2,相对,C1,的容量比及相对介损值,由于第一次已经将,C1,的介损及电容量测出,通过,C1,就可以推算出,C2,的值。,另外用于串联,C1,与标准电容器的导线对地电容与,C1,、,Cn,形成了,T,型网络,对测量精度有影响。为了减小这种影响,一般可以采用将导线悬空减小对地电容的办法,目前有些仪器已经加了补偿算法。,抗干扰方法,抗干扰方法,介损测量受到的主要干扰是感应电场产生的工频电流。无论何种测量方式,它都会进入桥体:,抗干扰方法,抗干扰方法,测量一次介损,然后将试验电源倒相,180,度再测量一次,取平均值。,倒相法是抗干扰最简单的方法,也是效果最差的方法。因为两次测量之间干扰电流或试品电流的幅度会发生波动,会引起明显误差。,抗干扰方法,抗干扰方法,另一种工频抗干扰方法是采用大功率移相电源,调整试验高压的相位,使试品电流与干扰电流方向相同或相反,这样干扰电流影响减小,再配合倒相测量,能大大提高测量精度。,再一种方法是采用小功率调幅调相信号源,从,R3,桥臂上抵消干扰电流(干扰抵偿法),再配合倒相测量,能大大提高测量精度。这种方法也是采用工频抗干扰的最佳方法。,抗干扰方法,抗干扰方法,干扰十分严重时,变频测量能显示更强的抗干扰能力。例如用,55Hz,测量时,测量系统采用了数字滤波技术,只允许,55Hz,信号通过,,50Hz,干扰信号被有效抑制。,变频测量时,仪器对流过标准电容的电流,In,和被试品的电流,Ix,进行实时同步采样。得到两组包含有干扰及信号源的混合信号,仪器再运用快速傅立叶变换算法,将混合信号中信号源的信号(如,55Hz,信号)与干扰源(如,50Hz,信号)信号分离。这样就很容易把我们关心的信号源信号分离出来。达到了抗干扰的目的。,抗干扰方法,抗干扰方法,由于介损值与试验频率有关,为了更好地与,50Hz,下的介损值等效,通常仪器分别采用,50Hz,5Hz,进行两次测量,再取平均值得到等效,50Hz,的介损值。为了使试验频率更接近,50Hz,,有时也采用,50Hz,2.5Hz,进行测量。,介损测试仪现场使用注意事项,介损测试仪现场使用注意事项,Text in here,Text in here,测量功能,如正接线、反接线、自激法,CVT,测量等,试验电压范围,常规介损一般,10kV,,额定电压介损根据要求确定,测试电流范围,常规介损一般,5uA,1A,,高压介损需要更大测试电流,测量精度,现场用一般,(,1%,读数,+0.05%,),实验室用需要更高要求,抗干扰方式,工频抗干扰或变频抗干扰,介损测试仪现场使用注意事项,介损测试仪现场使用注意事项,Text in here,Text in here,介损,偏大或不稳定,可能挂钩或测试夹子接触不良,接地不良等。仪器接地应尽量靠近被试品。,另外判断是否受到强干扰影响。,介损值偏小,通常测量电容很小的试品时受到,T,型网络影响,通过改变测试线角度,擦拭,烘干设备表面等措施加以改善。另外也可能受干扰影响。,仪器不能升压,检查设备接地刀闸是否打开,拔出测试线后升压,若还是不能排除,可以,判断仪器内部故障。,CVT,方式不能测量,用万用表测量自激电压输出,检查,C2,下端接地是否打开,检查中间变压器,尾端,X,是否接地。,轻载或过载,检查高压测试线是否击穿,芯线是否断线,芯线与屏蔽是否短路。,反接线电容偏大,反接线时测试夹对地附加电容会带来测量误差,可采用全屏蔽的测试线,提高测量精度。,知识回顾,Knowledge Review,祝您成功!,
展开阅读全文