资源描述
单击此处编辑母版文本样式,第二章2.12.1.2第二课时,成才之路,高中新课程,学习指导,人教,A,版,数学,必修,1,单击此处编辑母版文本样式,第二章基本初等函数,(),成才之路,高中新课程,学习指导,人教,A,版,数学,必修,1,2.1.2指数函数及其性质,第二课时指数函数性质的应用,第二章,2.1.2指数函数及其性质第二章,自我检测,1,已知,a,3,1.03,,,b,3,1.04,,则,(,),A,a,b,B,a,b,C,a,b,D,a,b,答案,C,解析,y,3,x,在,(,,,),上为增函数,,1.04,1.03,,,3,1.04,3,1.03,,,b,a,.,指数函数性质的应用课件,1,1,1.,在同一坐标系中,,y,a,x,,,y,b,x,,,y,c,x,,,y,d,x,(,a,,,b,,,c,,,d,0,,,1),,如图所示,则,a,,,b,,,c,,,d,的大小顺序为,_.,c,d,1,a,b,0,1.在同一坐标系中,yax,ybx,ycx,ydx(,利用函数,f,(,x,),2,x,的图象,作出下列各函数的图象,(1),f,(,x,1),;,(2),f,(|,x,|),;,(3),f,(,x,),1,;,(4),f,(,x,),;,(5)|,f,(,x,),1|,;,(6),f,(,x,),;,集合间关系的判断,利用函数f(x)2x的图象,作出下列各函数的图象集合,解析,(1),将,y,2,x,的图象右移一个单位,(2),将函数,y,2,x,的图象在,y,轴左侧部分去掉,然后将右侧部分作关于,y,轴对称的图形即得,(3),将,y,2,x,的图象下移一个单位,(4),作,y,2,x,的图象关于,x,轴对称图形,解析(1)将y2x的图象右移一个单位,指数函数性质的应用课件,(5),将,y,2,x,的图象先向下平移一个单位,再将,x,轴下方图象翻折到,x,轴上方,(6),将,y,2,x,的图象作关于,y,轴对称的图形,指数函数性质的应用课件,3,单调性的判断,3,3 单调性的判断 3,指数函数性质的应用课件,3,3,指数函数性质的应用课件,4,4,指数函数性质的应用课件,求函数,y,9,x,2,3,x,2,的值域,解析,设,3,x,t,,则,y,t,2,2,t,2,(,t,1),2,3.,上式中当,t,0,时,y,2,,,又,t,3,x,0,,,y,9,x,2,3,x,2,的值域为,(,2,,,),求函数y9x23x2的值域,随堂测评,随堂测评,1,若,0,a,1,,则函数,f,(,x,),a,x,2,的图象不经过,(,),A,第一象限,B,第二象限,C,第三象限,D,第四象限,答案,A,指数函数性质的应用课件,2,已知,0.5,m,0.5,n,,则,m,,,n,的大小关系是,(,),A,m,n,B,m,n,C,m,n,D,不能确定,答案,A,指数函数性质的应用课件,答案,D,答案D,答案,B,答案B,指数函数性质的应用课件,答案,0,,,),解析,原不等式可化为,3,x,2,2,x,3,,,解得,x,1.,原不等式的解集为,x,|,x,1,答案0,),
展开阅读全文