资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,8.2,用“加减消元法”解 二元一次方程组,主要步骤:,基本思路,:,写解,求解,代入,一元,消去一个,元,分别求出,两个,未知数的值,写出,方程组,的解,变形,用含,一个未知数,的代数式,表示,另一个未知数,消元,:,二元,1,、解二元一次方程组的基本思路是什么?,2,、用代入法解方程组的步骤是什么?,一元,复习:,练习,2,:用代入消元法解方程组,x,+y,=,10,2x+y=,16,解二元一次方程组的基本思想,(),消 元,大家想一想,:,除了用代入法之外,还有没有其他的方法来消元呢,?,练习,1:,已知,x+y,=,10,用含,x,的代数式表示,y,则,y=_;,用含,y,的代数式表示,x,则,x=_.,课前热身:,10,x,10,y,合并同类项,(1)3x+(-3x)=_,(2)2y-2y=_,(3)9x+_=0,(4)7y,_=0,想一想:,在一个方程组里,如果某个未知数的系数是,相同,或,互为相反数,,我们可不可以用,加减法,消去这个未知数。,0,0,(-9x),(-7y),做一做,:,X,+y=,10,2 x+y=,16,解,:,得,x,=,6,把,x,=,6,代入,得,y=4,x,=,6,y=4,解方程组,探究学习:,注意到这个方程组中,未知数,y,的系数,相同,,,.,请你把这两个方程的左边与左边,相减,,右边与右边,相减,,看看,能得到什么结果?,.,探 索,:,把两个方程的两边分别相减,就,消去了,y,,得到,x=,6,观察:,未知数,y,的系数有什么关系?除了代入法还有其它方法吗?,联系上面的解法,想一想怎样解方程组,思考:,观察:,未知数,x,的系数有什么关系?你有何想法吗?,通过将两个方程相加(或相减)消去一个未知数,将方程组转化为一元一次方程来解的,.,这种解法叫做,加减消元法,简称,加减法,.,思 考,:,从上面的解答过程中,你发现了二元一次方程组的新解法吗?,利用,加减消元法,解方程组时,在方程组的两个方程中,:,(1),某个未知数的系数互为相反数,则可以直接,消去这个未知数,;,(2),如果某个未知数系数相等,则可以直接,消去这个未知数,把这两个方程中的两边分别相加。,把这两个方程中的两边分别相减,你来说说:,解下列方程组:,1.,2.,3.,4.,初步尝试:,3x+4y=16,5x,6y=33,解方程组:,分析:,利用等式的基本性质将某个未知数的系数变为相同或互为相反数,即可用加减法消去这个未知数。,解,:,3,2,得,19,x,=114,X=6,把,X=6,代入,得,30+4y=16,y=-0.5,X=6,y=-0.5,4y=,2,9x+12y=48,10 x-12y=66,+,得,例题讲解,X,的系数是,3,和,5,既不相等,也不互为相反数,,y,的系数是,4,和,-6,也是既不相等,又不互为相反数,。,你有办法把其中一个未知数的系数,变成,相等,或互为相反数,吗?,探 索,:,思 考:,能否先消去,x,再求解?,解下列方程组:,1.,2.,3.,4.,初步尝试:,加减法解二元一次方程组的一般步骤:,4,。写出方程组的解。,1,。把一个方程(或两个方程)的两边都乘以一个适当的数,使两个方程的一个未知数的系数的绝对值相等;,2,。,把一个未知数系数绝对值相等的两个方程的两边分别相加(或相减),得到一个一元一次方程,求得一个未知数的值;,3,。把这个未知数的值代入原方程组的任何一个方程,求得另一个未知数的值;,你来说说:,今天你收获了什么?,加减法解二元一次方程组,加减法解二元一次方程组的一般形式:,1,、有一个未知数的,系数,相等,或,互为相反,数,。,2,、两个未知数的系数都不相等或都不互为相反数。,OK,知识拓展:,(1),不解方程组,2X,+7y=3,3x 2y=17,则,x+y=_,已知:,a-b=3,b-c=4,则,6(a-c)+8=_,(3),关于,x,、,y,的方程组,3x+2y=m,X y=4-m,的解满足,2x+3y=3.,求,m,的值。,4,50,M,7,/,2,
展开阅读全文