资源描述
宇轩图书,目 录,考点知识梳理,宇轩图书,上一页,下一页,首 页,中考典例精析,宇轩图书,上一页,下一页,首 页,专题训练,宇轩图书,上一页,下一页,首 页,举一反三,宇轩图书,上一页,下一页,首 页,专题五综合型问题,考点知识梳理,中考典例精析,专题训练,专题训练,【,练习篇,】,1,阅读理解型问题,一般篇幅较长,涉及内容丰富,构思新颖别致这类问题一般分两部分:一是阅读材料,二是考查内容它要求学生根据阅读获取的信息回答问题提供的阅读材料主要包括:一个新的数学概念的形成和应用过程,或一个新的数学公式的推导与应用,或提供新闻背景材料,主要题型有:,(1),判断概括型,即阅读特殊范例推出一般结论;,(2),方法模拟题,即阅读解题过程,总结解题规律、方法;,(3),迁移发展型,即阅读新知识,研究新问题,运用新知识解决问题,解答这类题关键是认真仔细阅读其内容,理解其实质,把握其方法、规律,然后加以解决,考查内容既有考查基础的,又有考查自学能力和探索能力等综合能力的,温馨提示:,解答阅读理解型的关键在于阅读,核心在于理解,目的在于应用,.,解题的策略是:理清阅读材料的脉络,归纳总结重要条件、数学思想方法以及解题的方法技巧,构建相应的数学模型来完成解答,.,2,运动型问题综合性较强,涉及三角形、四边形、函数、圆等知识在中考命题中一般设置为压轴题解决的一般思路是化动为静,数形结合分析此类题时要明确运动的起始点、运动方向和过程、终点,最后结合所求问题思考解题过程,3,解图表信息题关键是,“,识图,”,和,“,用图,”,解题时,要求通过认真阅读、观察和分析图象、图形、表格,获取信息,根据信息中数据或图形特征,找出数量关系或弄清函数的对应关系,研究图形的性质,进行推理、论证、计算,从而解决实际问题图表信息问题往往出现在,“,方程,(,组,),、不等式,(,组,),、函数、统计与概率,”,等知识应用题中,审题时注意把握图表中的信息,2011,北京 阅读下面材料:,小伟遇到这样一个问题:如图所示,在梯形,ABCD,中,,AD,BC,,对角线,AC,、,BD,相交于点,O,.,若梯形,ABCD,的面积为,1,,试求以,AC,、,BD,、,AD,BC,的长度为三边长的三角形的面积,小伟是这样思考的,:,要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可,他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题,.,他的方法是过点,D,作,AC,的平行线交,BC,的延长线于点,E,得到的,BDE,即是以,AC,、,BD,、,AD,BC,的长度为三边长的三角形,(,如图所示,).,请你回答,:,图中,BDE,的面积等于,_,参考小伟同学思考问题的方法,解决下列问题:,如图所示,,ABC,的三条中线分别为,AD,、,BE,、,CF,.,(1),在图中利用图形变换画出并指明以,AD,、,BE,、,CF,的长度为三边长的一个三角形,(,保留画图痕迹,),;,(2),ABC,的面积为,1,,则以,AD,、,BE,、,CF,的长度为三边长的三角形的面积等于,_,【,点拨,】(1),等底等高的三角形面积相等,;(2),中线平分三角形的面积,.,(,2011,荆州),2011,年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买,型、,型抗旱设备所投资的金额与政府补贴的额度存在下表所示的函数对应关系,.,(1),分别求,y,1,和,y,2,的函数解析式;,(2),有一农户同时对,型、,型两种设备共投资,10,万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额,型,型,投资金额,x,(,万元,),x,5,x,2,4,补贴金额,y,(,万元,),y,1,kx,(,k,0),2,y,2,ax,2,bx,(,a,0),2.4,3.2,10,t,7(,万元,),即投资,7,万元购,型设备,投资,3,万元购,型设备,共获得最大补贴,5.8,万元,【,点拨,】,邻边相等的平行四边形是菱形对于动态几何问题的解答,一定要根据图形的变化进行分类讨论,1,在今年我市初中学业水平考试体育学科的女子,800,米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程,s,(,米,),与所用时间,t,(,秒,),之间的函数图象分别为线段,OA,和折线,OBCD,.,如图,下列说法正确的是,(,),A,小莹的速度随时间的增大而增大,B,小梅的平均速度比小莹的平均速度大,C,在起跑后,180,秒时,两人相遇,D,在起跑后,50,秒时,小梅在小莹的前面,答案:,D,2,如图所示,矩形,ABCD,中,点,P,是线段,AD,上一动点,,O,为,BD,的中点,,PO,的延长线交,BC,于,Q,.,(1),求证:,OP,OQ,.,(2),若,AD,8,厘米,,AB,6,厘米,,P,从点,A,出发,以,1,厘米,/,秒的速度向,D,运动,(,不与,D,重合,),设点,P,运动时间为,t,秒,请用,t,表示,PD,的长;并求,t,为何值时,四边形,PBQD,是菱形,3,某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去例如,可以定义:,“,圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形,”,相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方,请你协助他们探索这个问题,(1),写出判定扇形相似的一种方法:若,_,,则两个扇形相似;,(2),有两个圆心角相等的扇形,其中一个,半径为,a,、弧长为,m,,另一个半径为,2,a,,则它,的弧长为,_,;,(3),如图是一完全打开的纸扇,外侧两竹条,AB,和,AC,的夹角为,120,,,AB,为,30 cm,,现要做一个和它形状相同、面积是它一半的纸扇,(,如图所示,),,求新做纸扇,(,扇形,),的圆心角和半径,综合型问题,训练时间:,60,分钟,分值:,100,分,一、选择题,(,每小题,6,分,共,12,分,),1,(2010,中考变式题,),如图,已知正方形,ABCD,的边长为,4,,,E,是,BC,边上的一个动点,,AE,EF,,,EF,交,DC,于,F,,设,BE,x,,,FC,y,,则当点,E,从点,B,运动到点,C,时,,y,关于,x,的函数图象是,(,),【,答案,】A,【,答案,】A,3,(2011,成都,),如图,在,ABC,中,,B,90,,,AB,12 mm,,,BC,24 mm,,动点,P,从点,A,开始沿边,AB,向,B,以,2 mm/s,的速度移动,(,不与点,B,重合,),,动点,Q,从点,B,开始沿边,BC,向,C,以,4 mm/s,的速度移动,(,不与点,C,重合,),如果,P,、,Q,分别从,A,、,B,同时出发,那么经过,_s,,四边形,APQC,的面积最小,【,答案,】3,5,(2010,中考变式题,),为确保信息安全,信息需要加密传输,发送方由明文,密文,(,加密,),,接收方由密文,明文,(,解密,),已知加密规则为:明文,a,,,b,,,c,,,d,对应密文,a,2,b,,,2,b,c,,,2,c,3,d,4,d,,例如,明文,1,2,3,4,对应密文,5,7,18,16,,当接收方收到密文,14,9,23,28,时,则解密得到的明文为,_,【,解析,】,由题意可得,a,2,b,14,2,b,c,9,2,c,3,d,23,,,4,d,28,,由,4,d,28,可得,,d,7,,,c,1,,,b,4,,,a,6.,【,答案,】6,4,1,7,6,(2012,中考预测题,),我们常用的数是十进制数,计算机程序使用的是二进制数,(,只有数码,0,和,1),,它们两者之间可以互相换算,如将,(101),2,,,(1 011),2,换算成十进制数应为:,(101),2,1,2,2,0,2,1,1,2,0,4,0,1,5,;,(1 011),2,1,2,3,0,2,2,1,2,1,1,2,0,11.,按此方式,将二进制数,(1 001),2,换算成十进制数的结果是,_,【,解析,】(1001),2,1,2,3,0,2,2,0,2,1,1,2,0,9.,【,答案,】9,7,(2010,中考变式题,),含有同种果蔬但浓度不同的,A,、,B,两种饮料,,A,种饮料重,40,千克,,B,种饮料重,60,千克现从这两种饮料中各倒出一部分,且倒出部分的质量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合如果混合后的两种饮料所含的果蔬浓度相同那么从每种饮料中倒出部分的质量是,_,千克,【,答案,】24,三、解答题,(,共,48,分,),8,(10,分,)(2010,中考变式题,),已知梯形,ABCD,中,,AD,BC,,,AB,AD,,如图所示,,BAD,的平分线,AE,交,BC,于点,E,,连接,DE,.,(1),在图中,用尺规作,BAD,的平分线,AE,(,保留作图痕迹,不写作法,),,并证明四边形,ABED,是菱形;,(2),ABC,60,,,EC,2,BE,,求证:,ED,D,C.,【,答案,】,(1),解:如图,分别以点,B,、,D,为圆心,以大于,AB,的长为半径作弧,两弧交于一点,P,,连接,AP,,,AP,即为,BAD,的平分线,且,AP,交,BC,于点,E,.,连接,BD,、,DE,,,AP,与,BD,交点为,O,.,AB,AD,,,BAO,DAO,,,AO,AO,,,ABO,ADO,,,BO,OD,.,AD,BC,,,OBE,ODA,,,OAD,OEB,.,BOE,DOA,,,BE,AD,,,四边形,ABED,是平行四边形,又,AB,AD,,平行四边形,ABED,是菱形,(2),设,DE,2,a,,则,CE,4,a,,过点,D,作,DF,BC,,垂足为,F,.,ED,2,DC,2,EC,2,,,EDC,为直角三角形,,ED,DC,.,9,(18,分,)(2011,宁波,),阅读下面的情景对话,然后解答问题:,(,1),根据,“,奇异三角形,”,的定义,请你判断小华提出的命题:,“,等边三角形一定是奇异三角形,”,是真命题还是假命题?,(2),在,Rt,ABC,中,,ACB,90,,,AB,c,,,AC,b,,,BC,a,,且,b,a,.,若,Rt,ABC,是奇异三角形,求,a,b,c,;,求证:,ACE,是奇异三角形;,当,ACE,是直角三角形时,求,AOC,的度数,(3),证明:,AB,是,O,的直径,,ACB,ADB,90,.,在,Rt,ACB,中,,AC,2,BC,2,AB,2,,,在,Rt,ADB,中,,AD,2,BD,2,AB,2,.,AB,2,AD,2,BD,2,2,AD,2,,,AC,2,CB,2,2,AD,2,.,又,CB,CE,,,AE,AD,,,AC,2,CE,2,2,AE,2,.,ACE,是奇异三角形,由可得,ACE,是奇异三角形,,AC,2,CE,2,2,AE,2,.,当,ACE,是直角三角形时,,10,(20,分,)(2011,山西,),如图,在平面直角坐标系中,四边形,OABC,是平行四边形直线,l,经过,O,、,C,两点,点,A,的坐标为,(8,0),,点,B,的坐标为,(11,4),,动点,P,在线段,OA,上从点,O,出发以每秒,1,个单位的速度向点,A,运动,同时动点,Q,从点,A,出发以每秒,2,个单位的速度沿,A,B,C,的方向向点,C,运动,过点,P,作,PM,垂直于,x,轴,与折线,O,C,B,相交于点,M,.,当,P,、,Q,两点中有一点到达终点时,另一点也随之停止运动,设点,P,、,Q,运动的时间为,t,秒,(,t,0),,,MPQ,的面积为,S,.,(1),点,C,的坐标为,_,,直线,l,的解析式为,_,(2),试求点,Q,与点,M,相遇前,S,与,t,的函数关系式,并写出相应的,t,的取值范围,(3),试求题,(2),中当,t,为何值时,,S,的值最大,并求出,S,的最大值,(4),随着
展开阅读全文