HumanDetectionandTracking-UAlberta人体检测与跟踪ualberta

上传人:ra****d 文档编号:252648858 上传时间:2024-11-18 格式:PPT 页数:12 大小:219KB
返回 下载 相关 举报
HumanDetectionandTracking-UAlberta人体检测与跟踪ualberta_第1页
第1页 / 共12页
HumanDetectionandTracking-UAlberta人体检测与跟踪ualberta_第2页
第2页 / 共12页
HumanDetectionandTracking-UAlberta人体检测与跟踪ualberta_第3页
第3页 / 共12页
点击查看更多>>
资源描述
Click to edit the title text format,Click to edit the outline text format,Second Outline Level,Third Outline Level,Fourth Outline Level,Fifth Outline Level,Sixth Outline Level,Seventh Outline Level,Eighth Outline Level,Ninth Outline Level,*,Click to edit the title text format,*,Click to edit the outline text format,Second Outline Level,Third Outline Level,Fourth Outline Level,Fifth Outline Level,Sixth Outline Level,Seventh Outline Level,Eighth Outline Level,Ninth Outline Level,Human Detection,Phanindra Varma,Detection - Overview,Human detection in static images is based on the HOG (Histogram of Oriented Gradients) encoding of images,Training set consists of positive windows (containing humans) and negative images,For each window in the training set the HOG feature vector is computed and linear SVM is used for learning the classifier,For any test image, the feature vector is computed on densely spaced windows at all scales and classified using the learned SVM,HOG encoding,Preprocessing:-,Gamma normalize each channel using square root transformation in the given window,For each channel compute gradients using -1 0 1 and -1 0 1,T,and find the channel with the largest gradient magnitude for each pixel,Compute gradient orientation (0 180) for each pixel in this dominant channel,Descriptor computation :-,Divide the window (64x128) into dense grid of points with horizontal and vertical spacing equal to 8 pixels,Divide the 16x16 region (block) centered on each point on the grid into cells of size 8x8 (i.e 4 cells for each grid point),For each pixel in the current block use Trilinear interpolation based on gradient strength to vote into a 2x2x9 histogram,HOG encoding (Contd.),Different voting schemes were used for each of the colored regions,Block normalization for illumination invariance is done on each block independently using the norm of the 2x2x9 vector,The final feature vector is the collection of all the 2x2x9 feature vectors from all the grid points,A Block of 16x16 pixels,Cell centers,Grid point,Training,The training set has been obtained from,The training set consists of positive 64x128 windows (2416) containing humans and negative images,Negative windows are sampled from the negative images at random locations (12000),Initial Phase learning :- Learn the SVM classifier on the original training set,Generate Hard examples :- Run the learned SVM on the negative images at all scales and window locations and save all the false positives (approx.6000),Training (Contd.),Second Phase learning :- Using the newly generated negative examples learn the new linear SVM (total positive windows 2400, negative windows 17000 approx),Following this procedure, 375 windows were misclassified out of the possible 19400 windows (using SVMLight),Testing,Given an Image :- HOG feature vector is computed across all scales and window locations and the locations and scales of all positive windows are saved (window size 64x128),This procedure gives multiple detections (at many scales and locations),To fuse overlapping detections the Mean Shift mode detection algorithm is used,Represent each detection in a 3D space (x y log(s) and iteratively compute the mean shift vector at each point,The resulting modes give the final detections and the bounding boxes are drawn using this final scale,Results - Detection,An example image,Detections when threshold,is zero,Results Detection (Contd.),Previous image,Detections when threshold,is equal to one,Results - Detection,An example image,Detections when threshold,is zero,Results Detection (Contd.),Result of Mean Shift mode detection,Comparision,Detection Video,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!