资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,Chapter 4 Combinational Logic Design Principles(组合逻辑设计原理),Basic Logic Algebra,(,逻辑代数基础,),Combinational-Circuit Analysis,(,组合电路分析,),Combinational-Circuit Synthesis,(,组合电路综合,),Digital Logic Design and Application,(,数字逻辑设计及应用,),1,Review of Switching Algebra(,开关代数内容回顾,),补充:,同或,(XNOR),、,异或(,XOR),A,0,A,1,A,n,=,1 1的个数是奇数,(odd number),0 1的个数是偶数,(even number),A,0,A,1,A,n,=,1 0的个数是偶数,0 0的个数是奇数,Digital Logic Design and Application,(,数字逻辑设计及应用,),2,Review of Switching Algebra(,开关代数内容回顾,),补充:,同或,、,异或,A,B,Y,=,A,B,Y,=1,A,B,Y,A,B,Y,Digital Logic Design and Application,(,数字逻辑设计及应用,),3,Formula Minimization(公式法化简),并项法:利用,AB+AB=A(B+B)=A,吸收法:利用,A+AB=A(1+B)=A,消项法:利用,AB+AC+BC=AB+AC,消因子法:利用,A+AB=A+B,配项法:利用,A+A=A A+A=1,Digital Logic Design and Application,(,数字逻辑设计及应用,),4,4.2 Combinational-Circuit Analysis (组合电路分析),Get the Logic Expression or Truth Table from Logic Circuit,(,由逻辑电路图得出逻辑表达式或真值表,),Digital Logic Design and Application,(,数字逻辑设计及应用,),5,Exhausting Way(穷举法),(图410),将全部输入组合加到输入端;,根据基本逻辑关系,从输入端到输出端,写出每一级门的输出;,根据最后输出结果列出真值表;,Digital Logic Design and Application,(,数字逻辑设计及应用,),6,Algebra Way(代数法),(图411,12,13,14,15,16,17),从输入端到输出端,逐级写出每一级门的输出逻辑式;,及时利用基本定理对逻辑式化简;,由最后输出端得到输出函数式;,Digital Logic Design and Application,(,数字逻辑设计及应用,),7,Minimize Logic Function(,化简逻辑函数,),什么是最简,项数最少,每项中的变量数最少,公式法化简,卡诺图化简,卡诺图表示逻辑函数,卡诺图的特点,合并最小项(化简),Digital Logic Design and Application,(,数字逻辑设计及应用,),8,Karnaugh Maps(,卡诺图表示逻辑函数,),Y,X,0 1,0,1,m,0,m,2,m,1,m,3,m,0,m,2,m,6,m,4,m,1,m,3,m,7,m,5,真值表的图形表示,Z,XY,00 01 11 10,0,1,YZ,WX,00,00,01,11,10,01,11,10,0,4,12,1,5,13,9,3,7,15,2,6,14,10,8,11,Digital Logic Design and Application,(,数字逻辑设计及应用,),9,Karnaugh Maps(,卡诺图表示逻辑函数,),0 0 0 1,0 0 1 0,0 1 0 0,0 1 1 1,1 0 0 0,1 0 1 1,1 1 0 1,1 1 1 0,A,B,C,F,F=,(A,B,C),(0,3,5,6),1,0,1,0,0,1,0,1,C,AB,00 01 11 10,0,1,例:填写下面两个函数的卡诺图,F,1,=,(A,B,C),(1,3,5,7),F,2,(A,B,C)=AC+BCD+B,Digital Logic Design and Application,(,数字逻辑设计及应用,),10,卡诺图的特点,逻辑相邻性:,相邻两方格只有一个因子互为反变量,合并最小项,两个最小项相邻可消去一个因子,四个最小项相邻可消去两个因子,八个最小项相邻可消去三个因子,2,n,个最小项相邻可消去,n,个因子,Digital Logic Design and Application,(,数字逻辑设计及应用,),11,两个最小项相邻 可消去一个因子,1,1,1,1,1,1,Z,XY,00 01 11 10,0,1,YZ,WX,00,00,01,11,10,01,11,10,1,1,1,1,1,1,1,1,XYZ+XYZ=XY,XYZ+XYZ=YZ,Digital Logic Design and Application,(,数字逻辑设计及应用,),12,AB,CD,00 01 11 10,00,01,11,10,1,1,1,1,1,1,1,1,1,1,1,1,1,1,ABCD+ABCD+ABCD+ABCD,=,ABD+ABD=BD,四个最小项相邻 可消去二个因子,Z,XY,00 01 11 10,0,1,1,1,1,1,1,1,1,1,Digital Logic Design and Application,(,数字逻辑设计及应用,),13,AB,CD,00,01,11,10,00,01,11,10,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,A,D,八个最小项相邻 可消去三个因子,F1=ABC+ABD+ACD+CD+ABC+ACD,Digital Logic Design and Application,(,数字逻辑设计及应用,),14,Karnaugh Maps Minimization(卡诺图化简),化简函数:,F2=,(A,B,C,D),(0,2,3,5,7,8,10,11,13),AB,CD,00 01 11 10,00,01,11,10,ABD,BCD,BC,BD,1,1,1,1,1,1,1,1,1,1、填图,2、圈组,3、读图,得到结果,F2=ABD+BCD+BC+BD,Digital Logic Design and Application,(,数字逻辑设计及应用,),15,卡诺图化简步骤,填写卡诺图,可以先将函数化为最小项之和的形式,圈组:找出可以合并的最小项,组(圈,),数最少、每组(圈)包含的方块数最多,方格可重复使用,但至少有一个未被其它组圈过,读图:写出化简后的乘积项,消掉既能为0也能为1的变量,保留始终为0或1的变量,乘积项:,0,反变量,1,原变量,Digital Logic Design and Application,(,数字逻辑设计及应用,),16,圈组原则,圈,1,,得化简“与或式”所有的,1,必须圈定,圈,0,,得化简“或与式”所有的,0,必须圈定,每个圈中,0,或,1,的个数为,2,i,个,a.,首先,保证圈组数最少,b.,其次,圈组范围尽量大,c.,每个圈组至少要有一个,1,或,0,未被其他组圈过,Digital Logic Design and Application,(,数字逻辑设计及应用,),17,圈组步骤,先圈孤立的1格(0格),再圈只能按一个方向合并的分组圈子尽量大,其余可任意方向合并,将每个圈组写成与项(或项),再进行逻辑加(乘),Digital Logic Design and Application,(,数字逻辑设计及应用,),18,卡诺图法化简,举例,F1=,(A,B,C,D)(0,3,4,5,6,7,9,12,14,15),F2=,(A,B,C,D)(1,5,6,7,11,12,13,15),F3=,(A,B,C,D)(0,1,3,4,5,7),F4=,(A,B,C,D)(1,2,3,5,6,7,9,10,11,13,14),Digital Logic Design and Application,(,数字逻辑设计及应用,),19,Several Concepts(几 个 概 念),A logic function P(X,1,X,n,),implies,a logic function F(X,1,X,n,),if for every input combination such that P=1,then F=1 also.,(,对于逻辑函数,P(X,1,X,n,),和,F(X,1,X,n,),,若对任何使,P=1,的输入组合,也能使,F,为1,则称,P,隐含,F,,,或者,F,包含,P,。,),P1(A,B,C)=ABC,F(A,B,C)=AB+BC,P2(A,B,C)=BC,P=,A,B,C,(1,3,6),F=,A,B,C,(1,3,5,6,7),Digital Logic Design and Application,(,数字逻辑设计及应用,),20,Several Concepts(几 个 概 念),A,prime implicant,of a logic function F(X,1,X,n,)is a product term P(X,1,X,n,)that inplies F,such that if any variable is removed from P,then the resulting product term does not imply F.,(,逻辑函数,F(X,1,X,n,),的,主蕴含项,是隐含,F,的乘积项,P(X,1,X,n,),,如果从,P,中移去任何变量,则所得的乘积项不隐含,F。),F(A,B,C)=ABC+BC+AC,=,BC+AC,主蕴含项定理:最小和是主蕴含项之和,Digital Logic Design and Application,(,数字逻辑设计及应用,),21,Several Concepts(几 个 概 念),蕴含项(,implicant,),:只包含,1,的一个矩形圈;,主蕴含项(,prime implicant,),:扩展到最大的蕴含项;,Digital Logic Design and Application,(,数字逻辑设计及应用,),22,Several Concepts(几 个 概 念),Distinguished 1-cell,(,奇异“1”单元,),An input combination that is covered by only one prime inplicant,(,仅被单一主蕴含项覆盖的输入组合,),没有可能被重复,“圈”过的,1,单元,AB,CD,00,01,11,10,00,01,11,10,1,1,1,1,1,1,1,1,1,1,Digital Logic Design and Application,(,数字逻辑设计及应用,),23,Several Concepts(几 个 概 念),Essential Prime Implicant(,质主蕴含项,),A prime implicant that covers one or more distinguished 1-cell,(,覆盖1个或多个奇异“1”单元的主蕴含项,),AB,CD,00,01,11,10,00,01,11,10,1,1,1,1,1,1,1,1,1,1,Digital Logic Design and Application,(,数字逻辑设计及应用,),24,Several Con
展开阅读全文