资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,简介Q-P-T超高强度钢,徐祖耀,上海交通大学材料科学与工程学院,简介Q-P-T超高强度钢徐祖耀,徐祖耀,我国应尽早发展高强度钢。中国工程院化工、冶金与材料学部第六届学术会议论文集。薛群基主编,化学工业出版社,2007, 403-406.,为改善环保、节能和节约原材料(包括铁矿石),急宜将器件轻量化、提高钢的强度(15002000MPa或以上)、降低钢产量。,徐祖耀,我国应尽早发展高强度钢。中国工程院化工、冶金与材料学,超高强度钢发展简史,20世纪60年代以来,发展出马氏体时效钢,如0.013C-18Ni-0.4Mo钢,(Floreen S., Physical metallurgy of maraging steels. Metall. Rev., 1968, 13B:115-128.),经马氏体相变及中间相(Ni,3,Mo、Ni,3,Ti、Fe,2,Mo)沉淀强化,马氏体二次时效钢:马氏体强化及碳化物沉淀强化,(Machmeier P. M., Little C. D., Horowitz M. H., Oates R. P. Development of a strong martensitic steel having good fracture toughness. Met. Technol., 1979: 291-296.,Ayer Raghavan, Machmeier P. M. Microstructural basis for the effect of chromium on the strength and toughness of AF1410-based high performance steels. Metall. Mater. Trans., 1996, 27A: 2510-2518. ),如0.16C-10Ni-2Cr-1Mo-14Co,钢,0.24C-11Ni-3Cr-1.2Mo-13.4Co钢,AF1410,AerMet100钢: 抗拉强度1500MPa以上,接近甚至超过2000MPa, 韧性60J。,含高合金元素、冶炼、加工要求较复杂,成本较高。,超高强度钢发展简史20世纪60年代以来,发展出马氏体时效钢,,Bhadeshia等研发的很强大件钢:,含0.78-0.98wt%C及Si、Mn、Cr(V、Co、Al)等合金元素。抗拉强度高达2.5GPa,硬度超过600HV,断裂韧度大于30-40MPam,1/2,(Caballero F. G., Bhadeshia H. K. D. H., Mowella J. A., Jones D. G., Brown P. Very strong low temperature bainite. Mater. Sci. Technol., 2002, 78: 279-284.,Caballero F. G., Bhadeshia H. K. D. H., Very strong bainite. Current opinion in solid state and mater. Sci., 2004, 8: 251-257.,Bhadeshia H. K. D. H. Large chunks of very strong steel. Mater. Sci. Technol., 2005, 21: 1293-1302.,Bhadeshia H. K. D. H. Bainitic balk nanocrystalline steel. Proc. the 3rd Inter Conf: Advanced Structural Steels (ICASS), Gyeongju, Korea, 2006: 3340. ),等温时间较长(2-60天,加入Co或Al后缩短至半小时),含碳量过高,易形成Fe,3,C,潜在脆性。,Bhadeshia等研发的很强大件钢:含0.78-0.98w,范长刚等提出在4340钢的基础上提高碳含量至0.5wt%,即0.37%Si钢中含碳量比4340提高0.10%,1.75%Si钢中碳含量比300M提高0.07%,其他成分相近,经真空电弧电渣重熔,控制S0.005%,P0.01%及气体含量,经900淬火:,*0.37%Si钢经200回火得:条状马氏体,,碳化物及2%的残余奥氏体,,R,m,=2205MPa, K,IC,=61.5MPam,1/2,*1.75%Si钢经270回火得:条状马氏体,,碳化物及0.5%,会有潜在脆性危险。,(范长刚,董瀚,时捷,刘燕林,雍岐龙,惠卫军,王毛球,翁宇庆。2200MPa超高强度低合金钢的组织和力学性能. 兵器材料科学与工程, 2006, 29(2): 31-35.),范长刚等提出在4340钢的基础上提高碳含量至0.5wt%,即,(,Krauss G. Deformation and fracture in martensitic carbon steelstempered at low temperatures. Metall. Trans., 2001, 32B: 205-221.),Fracture response, under conditions of tensile loading, as a function of tempering temperature and steel carbon content in carbon and low-alloy steels quenched from austenite to martensite,(Krauss G. Deformation and fr,淬火钢中残余奥氏体的作用,改善钢的塑性和韧性,如:,*条状马氏体被几纳米厚的残奥所包围,增加了韧性。,(徐祖耀.马氏体相变与马氏体(第二版,第三章). 北京:科学出饭社,1999.,Lai G.Y., Wood W. E., Clark R. A., Zackay V. F., Parker E. R. The effect of austenization,temperature on the microstructure and mechanical properties of as-quenched 4340 steel. Metall. Trans.,1974, 5: 1663-1670.),*奥氏体的热稳定化现象使工具钢无变形淬火和高速钢的无变形回火。,(Gordon P., Cohen M., Rose R. S. Effect of quenching-bath temperature on the tempering of high speed,steel. Trans. ASM, 1944, 33: 411-454.,徐祖耀,奥氏体稳定化及其对热处理的作用。北京钢铁工业学院学报,1957(4) : 26-33。,徐祖耀,周济源。9XC钢工具的等温淬火(无变形淬火)。北京钢铁工业学院学报,1957(4) : 34-41。,徐祖耀,周济源。P18钢杆形工具的等温淬火。北京钢铁工业学院学报,1957(4) : 42-44。,徐祖耀,周济源。工具钢的无变形淬火。机械工程学报,1957(5): 249-255。,徐祖耀,张万祯。奥氏体在回火时的催化作用和稳定化现象。科学记录,1957,1(3): 59-63。,Hsu Tzu-yao(徐祖耀), Chang Wan-chen(张万祯). The conditioning and stabilization of austenite during tempering. Science Record, New Series,1957, 1(3): 65-70.,徐祖耀,张万祯。高速钢在回火时奥氏体稳定化现象。北京钢铁工业学院学报,1958(6) : 85-91。,徐祖耀。高速钢的回火。金属学报,1965(8) : 443-454。,Hsu Tzu-yao(徐祖耀). The tempering of high speed steel. Scientia Sinica, 1965, 14: 1509-1522.,徐祖耀。高速钢工具的无变形回火。机械工程学报,1958(6): 203-206。,徐祖耀,嵇铃,杨嘉韦华。高速钢回火新工艺。首届中国热处理学会年会论文选集。北京: 机械工业出版社,1966: 196-202。),淬火钢中残余奥氏体的作用 改善钢的塑性和韧性,如:,*氢脆裂纹受阻于奥氏体:,300M钢(含残奥约3%)对比4340钢(残奥2%),同样析出,碳化物,,但应力腐蚀速度慢一个数量级。,(Ritchic R., Cedeno M. H. C., Zackay V. F., Parker E. R. Effects of silicon additions and retained austenite on stress corrosion cracking in ultra-high strength steels. Metall. Trans., 1978, 9A: 35-40.),*低碳钢中残余奥氏体的重要作用。,(徐祖耀。低碳钢中的残余奥氏体。 上海金属,1995,17(1): 1-6。),*氢脆裂纹受阻于奥氏体:,Thomas等在1979及1981年由高分辨电镜及场离子显微镜原子探针揭示:含0.27wt%C钢经淬火后,低碳条状马氏体为1.04wt% C残余奥氏体所包围。,(Rao B. V., Thomas G. Transmission electron microscopy characterization of dislocated “lath” martensite. Proc Inter Conf: MartensiticTransformations-79, MIT, 1979: 12-16.,Sarikaya M., Thomas G. Lath martensites in carbon steels are they bainitic. Proc Inter Conf: Solid to Solid Phase Transformations. Ed. Aaronson H. I., Laughlin D. E., Sekerka R. E., Wayman C. M.,1981. TMS-AIME, 1982: 999-1004.),他们认为淬火时碳由马氏体分配(不同相间的扩散)至奥氏体所致。,(Sarikaya M., Thomas G., Steeds J. W.,Barnal S. I., Smith G. D. W. Solute element partitioning and austenite stabilization in steels. Proc. Inter. Conf: Solid to Solid Phase Transformations, 1981. Ed. Aaronson H. I., Laughlin D. E., Sekerka R. E., Wayman C. M.,1981. TMS-AIME, 1982: 1421-1425.),Thomas等在1979及1981年由高分辨电镜及场离子显微,徐祖耀等于1983年发表碳分配计算结果,称:在淬火过程中碳分配使残余奥氏体增碳能基本、或稍迟后完成。,(徐祖耀,李学敏。低碳马氏体形成时碳的扩散.,金属学报,1983,19 : A83-88。,徐祖耀,李学敏。低碳马氏体形成时碳的扩散,(续)。金属学报,1983,19 A: 505-510。,Hsu T. Y. ( Xu Zuyao), Li Xuemin. Diffusion of,carbon during the formation of low-carbon,martensite. Scripta Metall., 1983, 17: 1285-,1288.),徐祖耀等于1983年发表碳分配计算结果,称:在淬火过程中碳分,在上世纪,已发现Si钢中贝氏体相变时碳会向奥氏体扩散,形成“无碳化物贝氏体”。,(Bhadeshia H. K. D. H. Bainite in steels. London: The Inst. Materials, Cambridge Press, 2001: 373; 385.),含较高Si钢经室冷形成无碳化物贝氏体。,(,Matlock D. K., Krauss G., Speer J. G. Microstructures and properties of direct-cooled forging steels, Materials Processing Technology, 2001, 117: 324-328.),Mn-Si Trip钢在中间退火时,碳由铁素体向奥氏体分配。,(Decooman B. C. Ed. Proc. Inter Conf on TRIP-aided high strength ferrous alloys. Gardracht Redaktions and Industrie Press Service, Bad Harzberg, Germany, 2002.),在上世纪,已发现Si钢中贝氏体相变时碳会向奥氏体扩散,形成“,淬火-分配(Q-P)工艺和淬火-分配-回火(Q-P-T)工艺:,Speer等提出Q-P工艺,即将含硅钢(如他们开始试用的0.35 C-1. 3 Mn- 0. 74 Si钢)淬火至M,s,一M,f,间,并再在一定温度等温使碳由马氏体分配至残余奥氏体,将一定量奥氏体富碳稳定至室温,以保证钢的塑性和韧性。,(,Speer J. G., Matlock D. K., DeCooman B. C., Schroch J. G. Carbon partitioning austenite after martensite transformation. Acta Mater., 2003, 51: 2611-2622),上文中Q-P热力学和动力学部分并不成功,但分配功效显著。Q-P工艺对发展超高强度钢卓有功绩。,淬火-分配(Q-P)工艺和淬火-分配-回火(Q-P-T)工艺,Q-P-T,热处理工艺,为进一步提高钢的强度,在Q-P工艺基础上,提出淬火一碳分配一回火(Q-P-T)工艺。即除碳分配外,在含一定量Si的钢中有意识地加入复杂碳化物形成元素,使在一定温度等温时,析出复杂碳化物或在低碳等温(均属回火)析出,碳化物,除分配至残余奥氏体韧化外,还增加沉淀强化。,淬火-碳分配-回火(Q-P-T)工艺示意图,(AT, QT, PT, TT和RT分别表示奥氏体化温度,淬火温度,碳分配温度,回火温度和室温),Schematic Quenching-Partitioning-Tempering (Q-P-T) process,(AT、QT、PT 、TT and RT are austenitizing, quenching, partitioning, tempering and room temperatures respectively),Q-P-T热处理工艺为进一步提高钢的强度,在Q-P工艺基础上,(徐祖耀。钢热处理的新工艺。第九次全国热处理大会论文集。中国机械工程学会热处理学会, 大连, 2007: 1-12。徐祖耀。钢热处理的新工艺。热处理, 2007, 22(1): 1-11。,Hsu T. Y. ( Xu Zuyao). Design of structure, composition and heat treatmeat process for high strength steel. Invited paper: Pacific Rim Inter. Conf. Advanced Materials and Processing, Korea, 2007. Phase Transformation Session. Mater. Sci. Forum, 2007, 561-565: 2283-2286.,徐祖耀。用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺。热处理,2008,23(2): 1-5。,Hsu T. Y. ( Xu Zuyao). Quenching-partitioning-tempering(Q-P-T) process for ultra-high strength steel. International Heat Treatment and Surface Engineering, 2008, 2(2): 64-68.,徐祖耀。白主创新发展超高强度钢。上海金属,2009,31(2): 1-6。,徐祖耀。淬火-碳分配-回火(Q-P-T)工艺浅介。金属热处理,2009,34(6):1-8。),(徐祖耀。钢热处理的新工艺。第九次全国热处理大会论文,Q-P-T钢的组织成分及热处理工艺设计,显微组织:具高位错密度的细条状(全部或部分纳米级条宽)马氏体;马氏体上析出复杂碳化物或,碳化物;避免析出Fe,3,C;马氏体条间含一定量(厚度)、一定碳含量的残余奥氏体;原始奥氏体具细晶组织。,成分:C0.5wt%,以免脆性;Si或Al约1-2wt%,抑制Fe,3,C形成,稳定,(,),碳化物,保证碳分配;Mn或Ni等合金元素少量,作固溶强化,降低Ms; 复杂碳化物形成元素,使Ms下降,并使呈沉淀强化。,热处理:Q-P-T处理,淬火温度(QT),分配温度(PT)以及回火(沉淀)温度的确立因所需钢的强、韧度而定。,Q-P-T钢的组织成分,Q-P-T钢经热处理后的组织与力学性质示例,1. 0.485C-1.195Mn-1.185Si-0.98Ni-0.21Nb钢:,850奥氏体化300s,淬火至95盐浴,再经400分配,进行碳分配及回火后水淬至室温。,经400保温10s后,试样含残余奥氏体4.1%,30s后含量增至6.4%。,经400保温10s后,形成几十纳米宽的马氏体条,外包残余奥氏体,Nb复杂碳化物呈纳米级大小的弥散沉淀(经40010s的尺寸为(52)nm,1800s后为(3510)nm)。,(Wang X. D., Zhong N., Rong Y. H., Hsu T. Y. ( Xu Zuyao). Novel ultra-high nano-lath martensitic steel by quenching-partitioning-tempering process. J. Mater. Research, 2009, 24: 260-267.),Q-P-T钢经热处理,含0.48wtC超高强度钢显微组织TEM像,(a)淬火至95明场像 (b)淬火至95的暗场像象及选区衍射,(c)400,C回火10s明场像 (d) 400,C回火10s暗场像及选区衍射,TEM micrograph of an ultra-high strength steel containing 0.48wt%C,(a) quenched in 95,C, bright field image; (b) quenched in 95,C, dark field image;,(c) tempered at 400,C for 10s, bright field image; (d) tempered at 400,C for 10s, dark field image,含0.48 wtC超高强度钢经400分配及回火10s后其中碳化物沉淀的TEM像,(a)明场像 (b)暗场像,TEM micrograph of carbide precipitation in an ultra-high strength steel containing 0.48wt%C after partitioning and tempering at 400,C for 10s,(a) bright field image; (b) dark field image,含0.48wtC超高强度钢显微组织TEM像含0.48 wt,含0.48 wtC超高强度钢经400分配及回火1800s后其中碳化物沉淀的TEM像,TEM micrograph of carbide precipitation in an ultra-high strength steel containing 0.48wt%C after partitioning and tempering at 400,C for 1800s,(a) bright field image; (b) dark field image,含0.48wt%超高强度钢经400保温不同时间后的抗拉强度和总延伸率,Ultimate tensile strength and elongation of 0.45wt%C ultra-high strength steel as function of duration at 400,C,含0.48 wtC超高强度钢经400分配及回火1800s,20.2C-1.5Mn-1.5Si-0.O5Nb-0.13Mo,钢,:,920,奥氏体化300s,淬火至220盐浴,400碳分配和回火(10,20,40,180s),水淬至室温。,400保温10,20,40,80和180s后的试样中的残余奥氏体量分别为4.5%,7.0%,5.4%,5.2%和5.8 %。,马氏体条宽:有小于100nm的,有大于100nm的。复杂碳化物呈纳米级大小。,(Zhong N., Wang X. D., Rong Y. H., Wang L. Enhancement of the mechanical properties of a Nb- microalloyed advanced high strength steel treated by quenching-partitioning-tempering process. Mater. Sci. Eng., 2009, 506A, 111-116.,20.2C-1.5Mn-1.5Si-0.O5Nb-0.13,0.2C QP-T钢经400不同时间碳分配和回火后的抗拉强度和总延伸率,Ultimate tensile strength and elongation of 0.2C Q-P-T steel as a function of partitioning and tempering duration at 400,C,0.2C QP-T钢经400不同时间碳分配和回火后的抗拉,3. 0.1C-1.51Mn-1.48Si-0.02Nb-0.04V-0.015Ti-0.304 Mo,钢:,1000,奥氏体化,淬至,223,,,350,保温,30s,,水淬至室温,得残余奥氏体,(0.7wt%C),约,6%,;,保温,100 s,后残余奥氏体,(0.8wt% C),约,3.3%;,经,350120 s,后得屈服强度,700 MPa,,抗拉强度,900 MPa,;,20,吸收能量,100J,,,200,为,60J,。,(Seung Chan Hong, Jae Cheou Ahn, Saug Yong Nam, Kim Seog Ju,,,Yang Hee Choen, Speer John G., David K. Mechanical properties of high-Si plate steel produced by the quenching-partitioning-tempering process. Metals and Materials Inter., 2007, 13(6): 439.),3. 0.1C-1.51Mn-1.48Si-0.02Nb-0,4. 0.41C-1.27Si-1.30Mn-1.01Ni-0.56Cr,钢:,金学军等工作(待发表)显示,碳化物强化的Q-P-T钢。820,奥氏体化,10min,,淬火至,180,盐浴,保温,30-10800s,,水淬至室温。马氏体强化及,碳化物析出强化,也属Q-P-T钢。,180,C分配及回火对力学性质和,残余奥氏体体积分数的影响,4. 0.41C-1.27Si-1.30Mn-1.01Ni,Q-P-T超高强度钢的综合力学性能优于双相钢、Trip钢、一般马氏体型钢、Q-P钢等等。,Q-P-T钢的抗拉强度和总延伸率和双相(DP)钢、TRIP钢、一般马氏体型(M)钢、Q-P钢,以及含Ni钢经Q-P处理(、和)的性质作比较,Comparison of ultimate tensile strength and total elongation for dual phase (DP), TRIP, martensitic (M), Q-P, Ni-containing Q-P (、 and ) and Q-P-T steels,Q-P-T超高强度钢的综合力学性能优于双相钢、Trip钢、,钢研总院结构材料研究所比较,Q-P-T,处理钢以及一般淬火,-,回火钢,(Q-P),的抗拉强度和伸长率,证明,Q-P-T,钢当荣胜一筹。,钢研总院结构材料研究所比较Q-P-T处理钢以及一般淬火-回火,Q-P-T钢与传统淬火回火钢(Q-T)钢抗拉强度和延伸率的比较,Q-P-T钢与传统淬火回火钢(Q-T)钢抗拉强度和延伸率,发展Q-P-T钢待解决的问题,高强度钢的纯洁、均质等尤须冶炼、连铸和轧加工等环节重视。日前我国多数制造厂的技术水平尚需提高。,提高产品强度及减轻重量还需由机械设计师来倡试执行。,高强度钢,尤其是强度大于,2000MPa,的超高强度钢的加工和热处理设备、工艺和运行,尚待有关人士通力合作解决。,在保证足够韧性的条件下,减小马氏体条宽来提高强度尚有余地,应结合马氏体相变形核率研究做进一步深化。,Q-P-T,工艺还可试作渗碳,以减少污染、降低成本。,Q-P-T,钢中含,1-2%Si,会影响表面质量。以,Al,代替,当属上策。但连铸中会有结渣等问题,亟待解决。,发展Q-P-T钢待解决的问题 高强度钢的纯洁、均质等尤须冶炼,谢谢!,谢谢!,
展开阅读全文