资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,计算化学及其应用,电子组态,Electron configuration,计算化学及其应用电子组态,1,Hartree-Fock,波函数的类型,闭壳层,RHF,自旋限制,Hartree-Fock,和,自旋电子占据同一个空间轨道,开壳层,UHF,自旋非限制,Hartree-Fock,和,自旋电子有不同的空间轨道,开壳层,ROHF,自旋限制开壳层,Hartree-Fock,大部分,和,自旋电子具有同样的空间轨道,个别占据轨道拥有剩下的电子,Hartree-Fock波函数的类型闭壳层,RHF,2,开壳层,UHF,和,ROHF,空轨道,占据轨道,开壳层 UHF和ROHF空轨道占据轨道,3,H,2,的,UHF,H2的UHF,4,波函数的稳定性检验,波函数的稳定性检验,5,波函数稳定性与势能面,单重态,三重态,E,R,波函数稳定性与势能面单重态三重态ER,6,电子态与势能面,(,实例,),Sc-CO,Ti-CO,电子态与势能面(实例)Sc-COTi-CO,7,SCF,的初始猜测,半经验计算,(,默认,),改变轨道占据方式,(GUESS=ALTER),在小基组计算结果读入轨道,(GUESS=CHECK),从附近的计算中读入轨道,(,对几何优化是默认的,),混合,HOMO,和,LUMO(GUESS=MIX),稳定性分析,(STABLE=OPT),SCF的初始猜测半经验计算(默认),8,SCF,收敛,简单的,SCF,迭代有时候会出现难以收敛,有时候可以用迭代阻尼和外推来解决,DIIS(,迭代子空间的直接反演,),可改善,SCF,收敛,(,默认方法,),能级移动,(VSHIFT=n),二次收敛,SCF(SCF=QC),SCF 收敛简单的SCF迭代有时候会出现难以收敛,9,计算化学及其应用-06-电子组态课件,10,计算化学及其应用,激发态,Excited States,计算化学及其应用激发态,11,基态和激发组态,基态 单激发组态 双激发态,基态和激发组态 基态,12,Koopman,定理,占据轨道的轨道能量近似等于此轨道电离能,(IP),的负值,f,i,的,IP=,e,i,如果假定轨道在电离时不松弛,这可以从,Hartree-Fock,能量表达式中推导出来,类似地,可以用下式近似计算激发能,Koopman定理占据轨道的轨道能量近似等于此轨道电离能(I,13,单重态和三重态,Pauli,原理要求波函数必须是反多重的,Y,(1,2)=-,Y,(2,1),波函数包括空间和自旋两部分,如果空间部分是对称的,那么自旋部分必须是反对称的,这只有一种情况,单重自旋态,a,(1),b,(2)-,b,(1),a,(2)/2,1/2,如果空间部分是反对称的,那么自旋部分必须是对称的,这有三种情况,三重自旋态,a,(1),a,(2),a,(1),b,(2)+,b,(1),a,(2)/2,1/2,b,(1),b,(2),单重态和三重态Pauli 原理要求波函数必须是反多重的,Y,14,单重态,.,三重态,.,a,(1),b,(2)-,b,(1),a,(2)/2,1/2,a,(1),a,(2),a,(1),b,(2)+,b,(1,)a,(2)/2,1/2,b,(1),b,(2),-,+,单重态 .,15,D,SCF,在允许轨道松弛的情况下,可以对激发态和基态进行,Hartree-Fock,计算,只有在激发态和基态的对称性不同时才能使用,(,否则激发态的计算会塌陷为基态,),对最低三重态做,UHF,计算是可以的,(,因为其,alpha,和,beta,自旋电子的数目与基态不同,),如果轨道在对称性上不同,有可能计算激发单重态或三重态,但需要技巧,一般情况下需要用组态相互作用方法,D SCF在允许轨道松弛的情况下,可以对激发态和基态进行H,16,组态相互作用,参考行列式,(Hartree-Fock,波函数,),单激发态行列式,(,把占据轨道,f,i,用未占据的轨道,f,a,代替,),双激发态行列式,等等,组态相互作用参考行列式(Hartree-Fock波函数)单激,17,用变分原理来确定,CI,系数,CIS,包括所有单激发态,用于激发态计算,不是用于基态相关能,CISD,包括所有单激发和双激发态,对计算基态的相关能非常有用,O,2,V,2,个行列式,(O=,占据轨道的数目,V=,未占据轨道的数目,),CISDT,单重,双重和三重激发态,仅限于小分子,大概,O,3,V,3,个行列式,完全,CI,所有可能的激发态,(O+V)!/O!V!),2,个行列式,在基组给定的情况下,得到精确的相关能,大概限于,14,个轨道上分布,14,个电子,组态相互作用,用变分原理来确定CI系数组态相互作用,18,CIS,CIS,19,多组态,SCF,把轨道分为虚轨道,活性轨道和内层轨道,虚轨道不被占据,对活性轨道进行完全,CI,计算,内层轨道被双占据,优化轨道系数和,CI,系数,Active orbitals,多组态 SCF 把轨道分为虚轨道,活性轨道和内层轨道Act,20,含时密度泛函理论,使用含时,Schrodinger,方程,(,或含时,Kohn-Sham,方程,),应用一个外部的振荡场,(,即光,),考察密度对外部振荡场的线性响应,当光的频率等于激发能时,会出现奇异点,对价层激发比,CIS,要好,比,CIS,计算量大,但使用的是类似是矩阵元,含时密度泛函理论使用含时Schrodinger 方程(或含时,21,甲醛,1,A,2,态的,CIS,优化几何结构,6-31,G,6-31+,G,6-31,G(d),6-31+,G(d),Exp.,R(CO),1.280,1.278,1.258,1.255,1.321,R(CH),1.076,1.077,1.085,1.085,1.092,HCH,121.4,121.4,117.6,118.2,121.5,0.0,0.0,27.8,24.9,20.5,Dipole,1.67,1.65,1.51,1.52,1.56,甲醛1A2态的CIS优化几何结构6-31G6-31+G6-3,22,苯的单激发能,a,Excited States,CIS,RPA,TD-BPW91,TD-B3LYP,Exp.,1,B,2u,6.15,5.96,5.19,5.40,4.9,1,B,1u,6.31,6.01,5.93,6.06,6.2,1,E,1g,7.13,7.12,6.34,6.34,6.33,1,A,2u,7.45,7.43,6.87,6.84,6.93,1,E,2u,7.75,7.74,6.85,6.88,6.95,1,E,1u,7.94,7.52,6.84,6.96,7.0,Mean abs.error,0.7,0.6,0.1,0.1,a,in eV,calculated using the 6-31+G(d)basis set,苯的单激发能a Excited StatesCISRPATD,23,计算化学及其应用,QM/MM,计算,QM/MM Calculations,计算化学及其应用QM/MM计算,24,QM/MM,方法,活性点用高级,MO,理论处理,外围用低计算量的分子力学处理,QM/MM 方法活性点用高级MO理论处理,外围,25,QM/MM,方法,构造体系的,Hamilton,量,由,QM,区和,MM,区组成,QM,和,MM,区在力学方面和电子方面,(,静电和极化,),都有相互作用,如果键在,QM,和,MM,区之间穿过分界线,:,用连接原子把,QM,区的键封住,用冻结或杂化轨道来结束,QM,的键,QM/MM 方法构造体系的Hamilton量,由QM区和M,26,
展开阅读全文