资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,相似三角形的性质,大英县太吉小学校九年级数学组,(练习课,),学习目标,掌握相似三角形的性质,会用性质解决相关的问题,.,重,难,点:,相似三角形性质的运用,1,、相似三角形,对应边成,_,对应角,_.,2,、相似三角形,对应边上的高、对应边上的中线、,对应角平分线的比都等于,_,.,3,、相似三角形,周长的比等于,_,,,相似三角形面积的比等于,_.,知识回顾,相似比的平方,相似三角形的性质,1,、,把一个三角形变成和它相似的三角形,,(,1,)如果边长扩大为原来的,5,倍,那么面积扩大为原来的,_,倍。,(,2,)如果面积扩大为原来的,100,倍,那么边长扩大为原来的,_,倍。,2,、两个相似三角形的一对对应边分别是,35,厘米和,14,厘米,(,1,)它们的周长差,60,厘米,这两个三角形的周长分别是,_,。(,2,)它们的面积之和是,58,平方厘米,这两个三角形的面积分别是,_,。,25,10,100cm,、,40cm,50cm,2,、,40cm,2,3,、两个相似三角形对应的中线长分别是,6cm,和,18cm,,,若较大三角形的周长是,42cm,,,面积是,12cm,2,则较小三角形,的周长是,cm,,,面积,cm,2,。,14,B,o,D,C,A,1,2,昨天堂堂清第,6,题,S,COD:,S,ODA,=1:2,DC/AB,ACD=BDC,CODAOB,S,COD:,S,AOB,=1:4,4,、如图,在,ABCD,中,,E,是,A,B,上一点,,AC,与,DE,相交于,F,,若,AE:EB=1:2,,,求,AEF,与,CDF,的相似比。若,AEF,的,面积为,5,平方厘米,求,CDF,的,面积。,B,F,E,D,C,A,5,、如图所示,点,D,是直角,ABC,的斜边,AB,的中点,,DEAB,交,BC,于点,E,,已知,S,BDE,:S,BCA,=1:3,BE=2,求,AB,与,BC,的长。,A,B,C,D,E,6,、如图,,ABC,是一块锐角三角形余料,边,BC=120,毫米,高,AD=80,毫米,要把它加工成正方形零件,使正方形的一边在,BC,上,其余两个顶点分别在,AB,、,AC,上,这个正方形零件的边长是多少?,N,M,Q,P,E,D,C,B,A,解:,设正方形,PQMN,是符合要求的,ABC,的高,AD,与,PN,相交于点,E,。,设正方形,PQMN,的边长为,x,毫米。,因为,PNBC,,,所以,APN ABC,所以,AE,AD,=,PN,BC,因此 ,得,x=48,(,毫米)。答:,-,。,80 x,80,=,x,120,补充“,射影定理,”,A,B,C,D,完成堂堂清去吧,
展开阅读全文