资源描述
*,*,第,39,课 几何应用性问题,2024/11/11,1,几何应用题的形式有长度、面积、体积、角度以及三角函数的计算,还有方案设计等基本解法:先根据题目已知条件准确画出图形,把生活情景的问题转化为数学问题,再运用几何计算中的一些基本方法予以解决,要点梳理,2024/11/11,2,1,解图形与几何应用题策略,首先要阅读材料,理解题意,找到考查的主要内容和知识点,揭示实际问题的数学本质,把实际问题转化成数学问题,然后应用相应的知识来解决问题,2,用代数方法解几何应用题,熟悉相关的知识,注意积累生活经验,灵活运用掌握的有关图形与几何知识,将实际问题转化为数学问题几何题中求线段的长度和求某一个角的度数,往往借用方程的思想方法来解决,难点正本 疑点清源,2024/11/11,3,1,(2011,济宁,),在一次夏令营活动中,小霞同学从营地,A,点出发,要到距离,A,点,1000m,的,C,地去,先沿北偏东,70,方向到达,B,地,然后再沿北偏西,20,方向走了,500 m,到达目的地,C,,此时小霞在营地,A,的,(,),A,北偏东,20,方向上,B,北偏东,30,方向上,C,北偏东,40,方向上,D,北偏西,30,方向上,基础自测,C,2024/11/11,4,解析:如图,,AD,BE,,则,DAB,ABE,180,,,又,DAB,70,,,EBC,20,,,所以,ABC,90.,在,Rt,ABC,中,,AC,1000,,,BC,500,,,则,BAC,30,,,DAC,70,30,40,,,故在北偏东,40,方向上,2024/11/11,5,2,在同一时刻,身高,1.6,米的小强在阳光下的影长为,0.8,米,一棵大树的影长为,4.8,米,则树的高度为,(,),A,4.8,米,B,4.6,米,C,9.6,米,D,10,米,解析:根据相似比,得 ,,x,9.6,,应选,C.,C,2024/11/11,6,3,如图,农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚如果不考虑塑料薄膜埋在土里的部分,那么搭建一个这样的蔬菜大棚需用塑料薄膜的面积是,(,),A,64m,2,B,68m,2,C,78m,2,D,80m,2,解析:将大棚圆柱展开,可知是一个矩形和两个半圆,,所以大棚面积,322,2,2,68.,B,2024/11/11,7,4,(2010,广州,),长方体的主视图与俯视图如图所示,则这个长方体的体积是,(,),A,52 B,32 C,24 D,9,解析:由主视图可知,这个长方体的长和高分别为,4,和,3,,,由俯视图可知,这个长方体的长和宽分别是,4,和,2,,,因此这个长方体的体积为,423,24.,C,2024/11/11,8,5,如图,某公园的一座石拱桥是圆弧形,(,劣弧,),,其跨度为,24,米,拱的半径为,13,米,则拱高为,(,),A,5,米,B,8,米,C,7,米,D,5,米,解析:设圆心为,O,,连,OA,、,OD,,,在,Rt,AOD,中,,OA,13,,,AD,12,,,OD,5,,,CD,13,5,8,,应选,B.,B,2024/11/11,9,题型一有关长度、面积问题,【,例,1】,小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示根据图中的数据,(,单位:,m),,解答下列问题:,(1),用含,x,、,y,的代数式表示地面总面积;,(2),已知客厅面积比卫生间面积多,21 m,2,,,且地面总面积是卫生间面积的,15,倍若,铺,1 m,2,地砖的平均费用为,80,元,那么铺,地砖的总费用为多少元?,题型分类 深度剖析,2024/11/11,10,解:,(1),S,6,x,32,43,2,y,6,x,2,y,18.,(2),解之,得,总费用:,(64,21.5,18)80,3600(,元,),探究提高,适当分割,将图形转化为便于求长度、面积的几何图形,2024/11/11,11,知能迁移,1,(2010,江西,),图是一张长与宽不相等的矩形纸片,同学们都知道按图所示的折叠方法可以裁剪出一个正方形纸片和一个矩形纸片,(,如图,),2024/11/11,12,(1),实验:将两纸片分别按图、所示的折叠方法进行:,请你分析在图、的最右边的图形中用虚线画出折痕,并顺次连接每条折痕的端点,所围成的四边形分别是什么四边形?,2024/11/11,13,(2),当原矩形纸片的,AB,4,,,BC,6,时,分别求出,(1),中连接折痕各端点所得四边形的面积,并求出它们的面积比;,(3),当纸片,ABCD,的长和宽满足怎样的数量关系时先后得到的两个四边形的面积比等于,(2),所得到的两个四边形的面积比?,(4),用,(2),中所得到的两张纸片,分别裁剪出那两个四边形,用剩下的,8,张纸片拼出两个周长不相等的等腰梯形,用图表示并标明主要数据,分别求出两个梯形的周长,2024/11/11,14,解:,(1),图所示的是正方形,图所示的是菱形,(2),S,正方形,NMPQ,S,正方形,ABEF,44,8,,,S,菱形,NMPQ,S,矩形,FEBC,24,4,,,S,正方形,NMPQ,S,菱形,NMPQ,21.,(3),设,AB,a,,,BC,b,,,则,S,正方形,a,2,,,S,菱形,a,(,b,a,),ab,a,2,,,要使,S,正方形,2,S,菱形,,,需,a,2,2(,ab,a,2,),,,3,a,2,2,ab,,,a,0,,,3,a,2,ba,2024/11/11,15,(4),如图所示,两个等腰梯形周长分别是,6,2,,,6,4 .,2024/11/11,16,题型二解直角三角形的应用,【,例,2】,如图,,A,城气象台测得台风中心在,A,城正西方向,300,千米的,B,处,并以每小时,10,千米的速度向北偏东,60,的,BF,方向移动,距台风中心,200,千米的范围内是受台风影响的区域,(1),A,城是否受到这次台风的影响?为什么?,(2),若,A,城受到这次台风的影响,那么,A,城,遭受这次台风影响的时间有多长?,2024/11/11,17,解:,(1),过,A,画,AC,BF,于,C,,,在,Rt,ABC,中,,ABC,30,,,AB,300,,,AC,AB,150,解题示范,规范步骤,该得的分,一分不丢!,解:设灯柱,BC,的长为,h,米,过点,A,作,AH,CD,于点,H,,过点,B,做,BE,AH,于点,E,,,四边形,BCHE,为矩形,ABC,120,,,ABE,30.,又,BAD,BCD,90,,,ADC,60.,在,Rt,AEB,中,,AE,AB,sin30,1,,,BE,AB,cos30,.,4,分,CH,.,又,CD,12,,,DH,12,.,2024/11/11,27,在,Rt,AHD,中,,tan,ADH,,,8,分,解得,,h,12,4(,米,),灯柱,BC,的高为,(12,4),米,10,分,探究提高,当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形,把实际问题中的数量关系归结为直角三角形中各元素之间的关系,2024/11/11,28,知能迁移,3,如图,小明想测量塔,BC,的高度他在楼底,A,处测得塔顶,B,的仰角为,60,;爬到楼顶,D,处测得大楼,AD,的高度为,18,米,同时测得塔顶,B,的仰角为,30,,求塔,BC,的高度,解:如图,,BAC,60,,,BDE,30,,,在,Rt,ABC,中,,ABC,30,,,在,Rt,BDE,中,,DBE,60,,,DAB,30,,,DBA,30.,DAB,DBA,,,DA,DB,18,,,BE,9.,塔,BC,的高度,BC,BE,EC,9,18,27(,米,),2024/11/11,29,题型四几何图形设计,【,例,4】(2011,衢州,),ABC,是一张等腰直角三角形纸板,,C,Rt,,,AC,BC,2.,(1),要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法,(,如图,1),,比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由,.,2024/11/11,30,(2),图,1,中甲种剪法称为第,1,次剪取,记所得的正方形面积为,S,1,;按照甲种剪法,在余下的,ADE,和,BDF,中,分别剪取正方形,得到两个相同的正方形,称为第,2,次剪取,并记这两个正方形面积和为,S,2,(,如图,2),,则,S,2,_,;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第,3,次剪取,并记这四个正方形的面积和为,S,3,(,如图,3),;继续操作下去,,则第,10,次剪取时,,S,10,_.,(3),求第,10,次剪取后,余下的所有小三角形的面积和,2024/11/11,31,解:,(1),解法一:如图甲,由题意得,AE,DE,EC,,,即,EC,1,,,S,正方形,CFDE,1.,如图乙,设,MN,x,,则由题意,,得,AM,MQ,PN,NB,MN,x,,,3,x,2,,解得,x,.,S,正方形,PNMQ,2,.,又,1,,,甲种剪法所得的正方形的面积更大,说明:图甲可另解,由题意得点,D,、,E,、,F,分别为,AB,、,AC,、,BC,的中点,,S,正方形,CFDE,S,ABC,1.,2024/11/11,32,解法二:如图甲,由题意得,AE,DE,EC,,即,EC,1.,如图乙,设,MN,x,,,则由题意得,AM,MQ,QP,PN,NB,MN,x,,,3,x,2,,解得,x,,,又,1,,即,EC,MN,.,甲种剪法所得的正方形的面积更大,(2),S,2,;,S,10,.,2024/11/11,33,(3),解法一:探索规律可知:,S,n,.,剩余三角形的面积和为:,2,2,.,解法二:由题意可知,,第一次剪取后剩余三角形面积和为,2,S,1,1,S,1,,,第二次剪取后剩余三角形面积和为,S,1,S,2,1,S,2,,,第三次剪取后剩余三角形面积和为,S,2,S,3,S,3,,,第十次剪取后剩余三角形面积和为,S,9,S,10,S,10,.,探究提高,根据题意,画出符合题意的各种图形,再逐一用相应的几何知识解答,2024/11/11,34,知能迁移,4,在一服装厂里有大量形状为等腰三角形的边角布料,(,如图,),现找出其中的一种,测得,C,90,,,AC,BC,4,,今要从这种三角形中剪出一种扇形,做成不同形状的玩具,使扇形的边缘半径恰好都在,ABC,的边上,且扇形与,ABC,的其他边相切请设计出所有可能符合题意的方案示意图,并求出扇形的半径,(,只要求画出图形,并直接写出扇形半径,),2024/11/11,35,解:,半径为,2,半径为,4,半径为,4,半径为,4,4,2024/11/11,36,27.,证明三角形相似缺乏条理,试题如图,,DE,AB,,,EF,BC,,,AF,5 cm,,,FB,3 cm,,,CD,2 cm,,求,BD,的长,学生答案展示,EF,BC,,,AFE,ABC,.,.,又,DE,AB,,,CDE,CBA,,,.,AF,5,,,FB,3,,,CD,2,,,,,BC,.,BD,.,易错警示,2024/11/11,37,剖析,在 ,中,这,是思路不清产生的错误由于所求线段不是三角形的边长,无,法直接确定相似三角形,同时已知线段与所求线段无直接关联,这就需要改造条件,由,DE,AB,,,EF,BC,,可以得到四边形,FBDE,是平行四边形,这样,BF,DE,,,EF,BD,,通过证相似能顺利求解,2024/11/11,38,正解,EF,BC,,,DE,AB,,,四边形,FBDE,是平行四边形,BF,DE,,,EF,BD,.,又,EF,BC,,,AFE,B,,,AEF,C,.,DE,AB,,,EDC,B,.,AEF,EDC,.,AFE,EDC,.,,即 ,.,EF,.,即,BD,EF,(cm),2024/11/11,39,批阅笔记,用相似形知识解题时,易出现对应关系混乱、定理应用错误的现象,要加强识图能力、联想能力
展开阅读全文