资源描述
*,*,*,*,2.2等差数列,第二课时,2.2等差数列第二课时,一,.,复习回顾:,a,n,-a,n-1,=d(d,是常数,),数列,a,n,为等差数列,a,n,-,a,n-,1,=d,1.,等差数列的定义,2.,等差数列的单调性,当,d=,0,时,,a,n,为常数列;,当,d,0,时,,a,n,为递增数列;,当,d,0,时,,a,n,为递减数列;,3.,等差数列的通项公式,一.复习回顾:an-an-1=d(d是常数)数列an,4.,等差数列的函数特性,5.,等差数列的图象,4.等差数列的函数特性5.等差数列的图象,6.,等差中项,若,a,,,A,,,b,成等差数列,则,A,叫做,a,与,b,的,等差中项,6.等差中项 若a,A,b成等差数列,则A叫做a与b的等差中,求出下列等差数列中的未知项,(1):3,a,5;,(2):3,b,c,-9;,数列:,1,,,3,,,5,,,7,,,9,,,11,,,13,5,是,3,和,7,的等差中项,,1,和,9,的等差中项;,9,是,7,和,11,的等差中项,,5,和,13,的等差中项,.,求出下列等差数列中的未知项(1):3,a,5;(2):3,例,3,(,1,)在等差数列,a,n,中,是否有,(,2,)在数列,a,n,中,如果对于任意的正整数,n,(,n2,),都有,那么数列,a,n,一定是等差数列吗?,在一个等差数列中,从第,2,项起,每一项(有穷数列的末项除外)都是它前一项与后一项的等差中项,.,例3(1)在等差数列an中,是否有 (2),推广:,a,n,=a,m,+(n,m)d,其实,a,9,=a,1,+,8,d=,a,1,+2d,+(,9,-,3,)d,例,4.,在等差数列,a,n,中,已知,a,3,=10,a,9,=28,求,d,。,a,9,=,a,3,+(,9,-3)d,推广:an=am+(nm)d 其实a9=a1+8d,解析:,由等差数列的通项公式得,等差数列的通项公式一般形式,:,a,n,=a,m,+(n,m)d,.,7.,等差数列通项公式的推广,:,斜率公式,解析:由等差数列的通项公式得等差数列的通项公式一般形式:a,例,5,:,某市出租车的计价标准为,1.2,元,/km,,起步价为,10,元,即最初的,4km,(不含,4,千米)计费,10,元。如果某人乘坐该市的出租车去往,14km,处的目的地,且一路畅通,等候时间为,0,,需要支付多少车费?,解:,根据题意,当该市出租车的行程大于或等于,4km,时,每增加,1km,,乘客需要支付,1.2,元,.,所以,我们可以建立一个等差数列,a,n,来计算车费,.,令,a,1,=11.2,,表示,4km,处的车费,公差,d=1.2,。,那么当出租车行至,14km,处时,,n=11,,,此时需要支付车费,a,11,=11.2,(11,1)1.2=23.2,答:需要支付车费,23.2,元。,例5:某市出租车的计价标准为1.2元/km,起步价为10元,,例,6,.,已知三个数成等差数列,其和,15,,其平方和为,83,,求此三个数,.,则,(,a,-,d,)+,a,+(,a,+,d,)=15,(,a,-,d,),2,+,a,2,+(,a,+,d,),2,=83,所求三个数分别为,3,,,5,,,7,或,7,,,5,,,3.,解得,a,5,,,d,2.,解:设此三个数分别为,a,-,d,,,a,,,a,+,d,,,变:三个数组成递减的等差数列,例6.已知三个数成等差数列,其和15,其平方和为83,求此三,练习,1,、等差数列,a,n,的前三项和为,12,,,前三项积为,48,,求,a,n,。,三个数等差的设法:,a-d,,,a,,,a+d,练习,2,、成等差数列的四个数之和为,26,,第二个与第三个数之积为,40,,求这四个数。,四个数等差的设法:,a-3d,,,a-d,,,a+d,,,a+3d,公差为,2d,。,练习1、等差数列an的前三项和为12,,设项技巧:,(,1,)若有三个数成等差数列,则可设为,(,2,)若有四个数成等差数列,则可设为,(,3,)若有五个数成等差数列,则可设为,公差为,d,公差为,2d,公差为,d,设项技巧:(1)若有三个数成等差数列,则可设为(2)若有四个,例,7,如图,三个正方形的边,AB,,,BC,,,CD,的长组成等差数列,且,AD,21cm,,这三个正方形的面积之和是,179cm,2,.,(,1,)求,AB,,,BC,,,CD,的长;,(,2,)以,AB,,,BC,,,CD,的长为等差数列的前三项,以第,9,项为边长的正方形的面积是多少?,3,,,7,,,11,a,9,=35,S,9,=1225,例7 如图,三个正方形的边AB,BC,CD的长组成等差数,8.,等差数列的性质,:,已知数列 为等差数列,那么有,性质,1,:若 成等差数列,则,成等差数列,.,证明:根据等差数列的定义,,即 成等差数列,.,如 成等差数列,成等差数列,.,推广:,在等差数列,有规律,地取出若干项,所得新数列仍然为等差数列。(如奇数项,项数是,7,的倍数的项),8.等差数列的性质:已知数列 为等差数列,那么有,推广:,已知一个等差数列的首项为,a,1,,公差为,d,a,1,,,a,2,,,a,3,,,a,n,(,1,)将前,m,项去掉,其余各项组成的数列是等差数列吗?如果是,他的首项与公差分别是多少?,a,m+1,,,a,m+2,,,a,n,是等差数列,首项为,a,m+1,,公差为,d,,项数为,n-m,推广:已知一个等差数列的首项为a1,公差为dam+1,am+,已知一个等差数列的首项为,a,1,,公差为,d,a,1,,,a,2,,,a,3,,,a,n,(,2,)取出数列中的所有奇数项,组成一个数列,是等差数列吗?如果是,他的首项与公差分别是多少?,a,1,,,a,3,,,a,5,,,是等差数列,首项为,a,1,,公差为,2d,取出的是所有偶数项呢?,a,2,,,a,4,,,a,6,,,是等差数列,首项为,a,2,,公差为,2d,已知一个等差数列的首项为a1,公差为da1,a3,a5,,已知一个等差数列的首项为,a,1,,公差为,d,a,1,,,a,2,,,a,3,,,a,n,(,3,)取出数列中所有项是,7,的倍数的各项,组成一个数列,是等差数列吗?如果是,他的首项与公差分别是多少?,a,7,,,a,14,,,a,21,,,是等差数列,首项为,a,7,,公差为,7d,取出的是所有,k,倍数的项呢?,a,k,,,a,2k,,,a,3k,,,是等差数列,首项为,a,k,,公差为,kd,已知一个等差数列的首项为a1,公差为da7,a14,a21,,已知一个等差数列的首项为,a,1,,公差为,d,a,1,,,a,2,,,a,3,,,a,n,(,4,)数列,a,1,+a,2,,,a,3,+a,4,,,a,5,+a,6,,,是等差数列吗?公差是多少?,a,1,+a,2,,,a,3,+a,4,,,a,5,+a,6,,,是等差数列,公差为,2d,数列,a,1,+a,2,+a,3,,,a,2,+a,3,+a,4,,,a,3,+a,4,+a,5,是,等差数列吗?公差是多少?,a,1,+a,2,+a,3,,,a,2,+a,3,+a,4,,,a,3,+a,4,+a,5,是等差数列,公差为,3d,。,已知一个等差数列的首项为a1,公差为d,例:,例:,性质,2,:设 若 则,证明:,设首项为,,则,推论,:,在等差数列中,与首末两项距离相等的两项和,等于首末两项的和,即,特别地,,p=q,时,即,注意:逆命题,是不一定成立,的;,性质2:设 若,判断:,可推广到三项,四项等,注意:等式两边作和的项数必须一样多,判断:可推广到三项,四项等,练习,.,在等差数列,a,n,中,,(1),已知,a,6,+,a,9,+,a,12,+,a,15,=20,,求:,a,1,+,a,20,(2),已知,a,3,+,a,11,=10,,求:,a,6,+,a,7,+,a,8,(3),已知,a,2,+,a,14,=10,,能求出,a,16,吗?,10,15,例,3.,在等差数列,a,n,中,,a,6,19,a,15,=46,,求,a,4,+,a,17,的值,不能,(4),在等差数列,a,n,中,a,1,-a,5,+a,9,-a,13,+a,17,=117,则,a,3,+a,15,=,(),234,练习.在等差数列an中,1015例3.在等差数列an,若数列,a,n,是等差数列,公差为,d,,设,c,k,为常数,则,a,n,+k _,等差数列,公差为,_,;则,ca,n,+k_,等差数列,公差为,_.,若数列,a,n,为等差数列,公差为,d,,则,ka,n,_,等差数列,公差为,_.(k,是常数,),若数列,a,n,与,b,n,都为等差数列,公差分别为,d,1,d,2,,则,a,n,+b,n,_,等差数列,公差为,_;,则,a,n,-b,n,_,等差数列,公差为,_,,,也是,kd,性质,3,.,也是,也是,d,cd,性质,4,.,性质,5,.,pa,n,+qb,n,_,等差数列,公差为,_.(,p,q,为常数,),也是,也是,也是,d,1,+d,2,d,1,-d,2,pd,1,+qd,2,若数列an是等差数列,公差为d,设c,k为常数,,2,.,若,a,p,=,q,,,a,q,=,p,(,pq,),,求,a,p+q,d=,-1,a,p+q,=,0,性质,6,.,2.若ap=q,aq=p(pq),求ap+,例,2,(1),已知等差数列,a,n,中,,a,3,a,15,=30,求,a,9,,,a,7,a,11,解:,(,1,),a,9,是,a,3,和,a,15,的等差中项,(2),已知等差数列,a,n,中,,a,3,a,4,a,5,a,6,a,7,=150,,求,a,2,a,8,的值,7+11=3+15,(,2,),3+7=4+6=5+5,a,3,a,4,a,5,a,6,a,7,=5 a,5,=150,即,a,5,=30,故,a,2,a,8,=2 a,5,=60,a,7,a,11,=a,3,a,15,=30,a,3,a,7,=a,4,a,6,=2 a,5,例2(1)已知等差数列an中,a3 a15=30,求,(1),等差数列,a,n,中,,a,3,a,9,a,15,a,21,=8,,则,a,12,=,(2),已知等差数列,a,n,中,,a,3,和,a,15,是方程,x,2,6x,1=0,的两个根,则,a,7,a,8,a,9,a,10,a,11,=,(3),已知等差数列,a,n,中,,a,3,a,5,=,14,2a,2,a,6,=,15,,则,a,8,=,跟踪训练,2,-19,(4),已知,a,4,+,a,5,+,a,6,+,a,7,=56,,,a,4,a,7,=187,,求,a,14,及公差,d,.,d=,_,2,a,14,=,_,3,d=2,a,14,=31,或,(1)等差数列an中,a3 a9a15a21=8,,1.,等差数列,a,n,的前三项依次为,a,-6,,,2,a,-5,,,-3,a+,2,,则,a,等于(,),A,.-1,B,.1,C,.-2,D.2,B,2.,在数列,a,n,中,a,1,=1,,,a,n,=,a,n+,1,+4,,则,a,10,=,2(2,a,-5)=(-3,a+2,)+(,a,-6,),提示,1:,提示:,d=a,n+,1,a,n,=4,-35,3.,在等差数列,a,n,中,(1),若,a,59,=70,,,a,80,=112,,求,a,101,;,(2),若,a,p,=,q,,,a,q,=,p,(,pq,),,求,a,p+q,d=,2,a,101,=154,d=,-1,a,p+q,=,0,本节练习,1.等差数列an的前三项依次为 a-6,2a-5,-3,高中数学等差数列公开课课件,练习,已知 ,求 的值。,解,:,练习已知,五、小结,1.,定义:,a,n,-,a,n,-1,=,d,(,n,2,)或,a,n,+1,-
展开阅读全文