BayesianFactorRegressionModelsintheLargepSmalln在大p贝叶斯因子回归模型小n

上传人:e****s 文档编号:251892966 上传时间:2024-11-11 格式:PPT 页数:11 大小:479.50KB
返回 下载 相关 举报
BayesianFactorRegressionModelsintheLargepSmalln在大p贝叶斯因子回归模型小n_第1页
第1页 / 共11页
BayesianFactorRegressionModelsintheLargepSmalln在大p贝叶斯因子回归模型小n_第2页
第2页 / 共11页
BayesianFactorRegressionModelsintheLargepSmalln在大p贝叶斯因子回归模型小n_第3页
第3页 / 共11页
点击查看更多>>
资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Bayesian Factor Regression Models in the“Large p,Small n ParadigmMike West,Duke University,Presented by:John Paisley,Duke University,Outline,Empirical Factor Regression(SVD),Latent Factor Regression,Sparse Factor Regression,Linear Regression&Empirical Factor Regression,Linear Regression,SVD Regression,D is a diagonal matrix of singular values,Empirical Factor Regression,By definition,Regression is now done in factor space using generalized shrinkage(ridge regression)priors on ,e.g.RVM,Problem of inversion:has many-to-one mapping,is canonical“least-norm inverse,Example:Biscuit Dough Data,NIR spectroscopy reflectance values are predictors,Response is fat content of dough samples,39 training,39 testing:data are pooled and testing data responses treated as missing values to be imputed,Top 16 factors used,based on size of singular values,Example:Biscuit Dough Data(2),Left:Fitted and predicted vs true values,Right:Least-norm inverse of beta,1700 nm range is absorbance region for fat,As can be seen,solution is not sparse,Latent Factor Regression,Loosen to,Under proper constraints on B,this finds common structure in X and isolates idiosyncrasies to noise,Now,variation in X has less effect on y,The implied prior is,When variance,Phi,0,this reverts to empirical,linear regression,Sparse Latent Factor Regression,WRT gene expression profiling,“multiple biological factors underlie patterns of gene expression variation,so latent factor approaches are natural we imagine that latent factors reflect individual biological functions This is a motivating context for sparse models.,Columns of B represents the genes involved in a particular biological factor.,Rows of B represent a particular genes involvement across biological factors.,Example:Gene Expression Data,p=6128 genes measured using Affymetrix DNA microarrays,n=49 breast cancer tumor samples,k=25 factors,Factor 3 separates by,red,:estrogen receptor,positive tumors,blue,:ER negative,Example:Gene Expression Data,Comparison with results obtained using empirical SVD factors,Conclusion,Sparse factor regression modeling is a promising framework for dimensionality reduction of predictors.,Only those factors that are relevant(e.g.factor 3)are of interest.Therefore,only those genes with non-zero values in that column of B are meaningful.,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 商业管理 > 商业计划


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!