资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,*,小结与复习,第五章 相交线与平行线,小结与复习第五章 相交线与平行线,1,知识网络,相交线,一般情况,邻补角,对顶角,邻补角互补,对顶角相等,特殊,垂直,存在性和唯一性,垂线段最短,点到直线的距离,同位角、内错角、同旁内角,平行线,平行公理及其推论,平行线的判定,平行线的性质,平移,平移的特征,命题,知识构图,两线四角,三线八角,知识网络相交线一般情况邻补角对顶角邻补角互补对顶角相等特殊垂,2,专题复习,【,例,1】,如图,AB,CD,于点,O,直线,EF,过,O,点,AOE,=65,求,DOF,的度数,.,B,A,C,D,F,E,O,解:,AB,CD,,,AOC,=90,.,AOE=,65,COE,=25,又,COE,=,DOF,(对顶角相等),DOF,=25,.,专题一 相交线,专题复习【例1】如图,ABCD于点O,直线EF过O点,A,3,【,迁移应用1,】,如图,AB,CD,相交于点,O,AOC=,70,EF,平分,COB,求,COE,的度数,.,A,B,C,D,E,F,O,答案:,COE,=125,.,【,归纳拓展,】,两条直线相交包括垂直和斜交两种情形,.,相交时形成了两对对顶角和四对邻补角,.,其中垂直是相交的特殊情况,它将一个周角分成了四个直角,.,【迁移应用1】如图,AB,CD相交于点O,AOC=70,4,【,例2,】,如图,,AD,为,ABC,的高,能表示点到直,线(线段)的距离的线段有(),A.2条 B.3条,C.4条 D.5条,答案:从图中可以看到共有三条,,A,到,BC,的垂线段,AD,B,到,AD,的垂线段,BD,C,到,AD,的垂线段,CD,.,B,C,D,A,专题二 点到直线的距离,B,【例2】如图,AD为ABC的高,能表示点到直答案:从图中可,5,【,迁移应用2,】,如图,AC,BC,CD,AB,于点,D,CD,=4.8cm,AC,=6cm,BC,=8cm,则点,C,到,AB,的距离是,cm;点,A,到,BC,的距离是,cm;点,B,到,AC,的距离是,cm.,【,归纳拓展,】,点到直线的距离容易和两点之间的距离相混淆,.,当图形复杂不容易分析出是哪条线段时,准确掌握概念,抓住垂直这个关键点,认真分析图形是关键,.,4.8,6,8,【迁移应用2】如图ACBC,CDAB于点D,CD=4.8,6,【,例,3,】,(1),如图所示,1=72,2=72,3=60,求,4,的度数,.,解:,1=2=72,,,a,/,b,(内错角相等,两直线平行),.,3+4=180,.,(,两直线平行,同旁内角互补,),3=60,,,4=120,.,a,b,专题三 平行线的性质和判定,【例3】(1)如图所示,1=72,2=72,3=6,7,证明,:,DAC,=,ACB,(,已知,),AD,/,BC,(,内错角相等,两直线平行,),D,+,DFE,=180,(,已知,),AD,/,EF,(,同旁内角互补,两直线平行,),EF,/,BC,(,平行于同一条直线的两条直线互相平行,),(2),已知,DAC,=,ACB,D,+,DFE,=180,求证,:,EF,/,BC.,A,B,C,D,E,F,证明:DAC=ACB(已知)(2)已知DAC=,8,【,迁移应用,3,】,如图所示,把一张张方形纸片,ABCD,沿,EF,折叠,若,EFG,=50,求,DEG,的度数,.,答案:,100,.,【,归纳拓展,】,平行线的性质和判定经常结合使用,由角之间的关系得出直线平行,进而再得出其他角之间的关系,或是由直线平行得到角之间的关系,进而再由角的关系得出其他直线平行,.,【迁移应用3】如图所示,把一张张方形纸片ABCD沿EF折叠,,9,【,例,4,】,如图所示,下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是(),解析:紧扣平移的概念解题,.,专题四 平移,D,【例4】如图所示,下列四组图形中,有一组中的两个图形经过平移,10,【,迁移应用4,】,如图所示,DEF,经过平移得到,ABC,那么,C,的对应角和,ED,的对应边分别是 (),A.,F,AC,B.,BOD,BA,C.,F,BA,D.,BOD,AC,【,归纳拓展,】,平移前后的图形形状和大小完全相同,任何一对对应点连线段平行(或共线)且相等,.,C,【迁移应用4】如图所示,DEF经过平移得到ABC,那么,11,解:设,1的度数为,x,则2的度数为,x,则3的度数为8,x,根据题意可得,x,+,x,+8,x,=180,,解得,x,=18,.,即1=2=18,,,而4=1+2(对顶角相等),.,故4=36,.,【,例5,】,如图所示,交于点,O,1=2,31,=81,求4的度数,.,),),),),1,2,3,4,专题五 相交线中的方程思想,解:设1的度数为x,则2的度数为x,则3的度数为8,12,【,迁移应用5,】,如图所示,直线,AB,与,CD,相交于点,O,AOC,:,AOD,=2:3,求,BOD,的度数,.,A,B,C,D,O,答案:,72,【,归纳拓展,】,利用方程解决问题,是几何与代数知识相结合的一种体现,它可以使解题思路清晰,过程简便,.,在有关线段或角的求值问题中它的应用非常广泛,.,【迁移应用5】如图所示,直线AB与CD相交于点O,ABCDO,13,若,AB,CD,则,=,.,1.,如图,若,3=4,,,则,;,AD,1,C,D,1,4,3,2,BC,2,2.,如图,,D,=70,,,C,=110,1=69,,则,B,=,B,A,C,E,D,1,69,A,B,巩固新知 深化理解,若ABCD,则 =.1.如,14,3.,如图,1,已知,ABCD,1=30,2=90,则,3=,4.,如图,2,若,AECD,EBF,=135,BFD,=60,D=,(,),A,.,75 B,.,45 C,.,30 D,.,15,图,1,图,2,6,0,D,巩固新知 深化理解,3.如图1,已知 ABCD,1=30,2=90,15,5,.已知:如图,ABCD,试探究,BED,与,B,D,的关系,?,A,B,C,D,E,图甲,图乙,答案:,BED,+,B,+,D,=360,BED,=,B,+,D,提示:过,点,E,分别作,AB,的平行线,把,BED,一分为二,.,巩固新知 深化理解,5.已知:如图ABCD,试探究BED与B,D的关系,16,通过今天的学习,能说说你的收获和体会吗,?,你有什么经验与收获让同学们共享呢?,回顾与反思,通过今天的学习,回顾与反思,17,
展开阅读全文