资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,新人教版第27章相似总复习课件,定义:,对应角相等、对应边成比例的三角形叫做相似三角形。,相似比:,相似三角形的对应边的比,叫做相似三角形的相似比。,ABC ABC,如果,BC=3,BC=1.5,那么,ABC,与,ABC,的相似比为_.,相似三角形,知识要点,三角形相似的判定方法有哪几种,?,预备定理,A,B,C,D,E,D,E,A,B,C,DEBC,ADEABC,相似三角形,相似三角形判定定理,1,:三边对应成比例的两个三角形相似,.,A,B,C,D,E,F,ABCDEF,相似三角形,相似三角形判定定理,2,:两边对应成比例且夹角相等的两个三角形相似,.,ABCDEF,A,B,C,D,E,F,相似三角形,相似三角形判定定理,3,:两个角对应相等的两个三角形相似,A,B,C,D,E,F,二、相似三角形,相似三角形判定定理,4,:在直角三角形中,,一,条斜边和,一条直角边对应成比例的两直角三角形相似。,相似三角形,相似三角形的判定:,(1)平行于三角形一边的直线截其它两边(或两边的延长线)相交;(2)两角对应相等;(3)两边对应成比例且夹角相等;(4)三边对应成比例;(,5,),一条斜边和一条直角边对应成比例。,相似三角形,A,D,E,B,A,C,B,A,B,C,D,ADE,绕点,A,旋转,D,C,A,D,E,B,C,A,B,C,D,E,B,C,A,D,E,点,E,移到与,C,点,重合,ACB=,Rt,CDAB,相似三角形基本图形的回顾:,相似三角形的性质:,1,、相似三角形的对应角相等,对应边成比例,2,、相似三角形的周长比等于相似比,对应高、对应角平分线,对应中线的比都等于相似比,3,、相似三角形的面积比等于相似比的平方。,相似三角形,知识要点,定义:各对应角相等、各对应边成比例的两个多边形叫做,相似多边形,.,相似多边形的性质:,相似多边形的,对应角相等,,,对应边的比相等,.,相似多边形的,周长之比,等于,相似比,;,面积之比,等于,相似比的平方,.,相似多边形,相似多边形的判定:,对应角相等、对应边的比相等,1,、,两个多边形不仅相似,而且对应顶点的连线相交于一点,这样的相似叫做,位似,点,O,叫做,位似中心,2,、利用位似的方法,可以把一个多边形,放大或缩小,知识要点,位似,3.,如何作位似图形,(,放大,),.,5.,体会位似图形何时为,正像,何时为,倒像,.,4.,如何作位似图形,(,缩小,),.,O,P,A,B,G,C,E,D,F,P,B,A,C,D,E,F,G,A,B,C,D,E,F,G,A,B,G,C,E,D,F,P,1.,如果两个相似图形的每组对应点所在的直线都交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个交点叫做位似中心,这时两个相似图形的相似比又叫做它们的位似比.,2.,位似图形有以下性质:,位似图形上任意一对对应点到位似中心的距离之比等于位似比,.,位似图形的对应点和位似中心在同一条直线上,3.位似图形中不经过位似中心的对应线段平行.,位似变换中对应点的坐标变化规律,:,在平面直角坐标系中,如果位似变换是以,原点为位似中心,,相似比为,k,,那么位似图形,对应点的坐标的比等于,k,或,k.,1.,找一找,:,(1),如图,1,已知,:DEBC,EF AB,则图中共有,_,对三角形相似,.,(2),如图,2,已知,:ABC,中,ACB=90,0,CD AB,于,D,DEBC,于,E,则图中共有,_,个三角形和,ABC,相似,.,A,B,C,D,E,F,如图,(1),3,E,A,B,C,D,如图,(2),4,五、知识运用,A,D,B,E,C,1,3,2,4,4.,若如图所示,,ABC,ADB,,,那么下列关系成立的是,(),A.ADB=ACB,B.ADB=ABC,C.,CDB=,CAB,D.,ABD=,BDC,5.,ABC,中,,AC=6,,,BC=4,,,CA=9,,,ABC,A,B,C,,,A,B,C,最短为,12,,则它的最长边的长度为,(),A.16 B.18,C.27 D.24,B,C,10,、如图,在直角梯形中,BAD=D=ACB=90,。,,,CD=4,AB=9,则,AC=_,D,A,B,C,6,1,ACP=B,A,C,B,P,2,或,APC=ACB,或,AP:AC=AC:AB,13,、如图点,P,是,ABC,的,AB,边上的一点,要使,APCACB,则需补上哪一个条件,?,15,、如图,D,E,分别,AB,AC,是上的点,AED=72,o,,,A=58,o,,,B=50,o,那么,ADE,和,ABC,相似吗?,A,E,B,D,C,若,AE=2,AC=4,则,BC,是,DE,的,倍,.,A,P,B,C,16,、,若,ACPABC,,,AP=4,,,BP=5,,则,AC=_,,,ACP,与,ABC,的相似比是,_,,周长之比是,_,,面积之比是,_,。,6,2,:3,2,:3,4:9,18,、在,平行四边形,ABCD,中,AE:BE=1:2.,A,B,C,D,E,F,若,S,AEF,=6cm,2,则,S,CDF,=,cm,2,54,S,ADF,=_cm,2,18,练一练,1,、如图,小明在打网球时,使球恰好能打过网,而且落在离网,5,米的位置上,求球拍击球的高度,h.,七、相似三角形的应用,2,、在同一时刻物体的高度与它的影长成正比例,在某一时刻,有人测得一高为,1.8,米的竹竿的影长为,3,米,某一高楼的影长为,60,米,那么高楼的高度是多少米,?,解,:,设高楼的高度为,X,米,则,答,:,楼高,36,米,.,3,、,皮,皮欲测,楼房高度,他借助一长,5m,的标竿,当楼房顶部、标竿顶端与他的眼睛在一条直线 上时,其他人测出,AB=4cm,AC=12m,。,已知皮皮眼睛离地面,1.6m.,请你帮他算出楼房的高度。,A,B,C,D,E,F,4,、已知左、右两棵并排的大树的高分别是,AB=8m,和,CD=12m,两树的根部的距离,BD=5,一个身高,1.6m,的人沿着正对这两棵树的一条水平直路从左向右前进,当他与走边较低的树的距离小于多少时,就不能看到右边较高的树的顶端,C?,A,B,C,D,E,F,G,H,FG=8,米,
展开阅读全文