资源描述
,基础知识,自主学习,知识梳理,基础知识,自主学习,考点自测,题型分类,深度剖析,思想方法,感悟提高,练出高分,练出高分,B,组专项,能力提升,#,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,2017/5/15,数列,本章复习,苏教,丹阳,市珥陵高级中学 施杰英,知识点,1,、等差数列定义、公式,2,、等比数列定义、公式,3,、,s,n,与,a,n,的关系,常见题型,1,、求,a,n,与,s,n,,,2,、证明数列为等差(等比)数列,例,1,设,a,n,是公比大于,1,的等比数列,,S,n,为数列,a,n,的前,n,项和,.,已知,S,3,7,,且,a,1,3,3,a,2,,,a,3,4,构成等差数列,.,(1),求数列,a,n,的通项;,题型一等差数列、等比数列的综合问题,解析,思维升华,解析,思维升华,例,1,设,a,n,是公比大于,1,的等比数列,,S,n,为数列,a,n,的前,n,项和,.,已知,S,3,7,,且,a,1,3,3,a,2,,,a,3,4,构成等差数列,.,(1),求数列,a,n,的通项;,题型一等差数列、等比数列的综合问题,解得,a,2,2.,设数列,a,n,的公比为,q,,,解析,思维升华,例,1,设,a,n,是公比大于,1,的等比数列,,S,n,为数列,a,n,的前,n,项和,.,已知,S,3,7,,且,a,1,3,3,a,2,,,a,3,4,构成等差数列,.,(1),求数列,a,n,的通项;,题型一等差数列、等比数列的综合问题,即,2,q,2,5,q,2,0.,q,1,,,q,2,,,a,1,1.,故数列,a,n,的通项为,a,n,2,n,1,.,(1),正确区分等差数列和等比数列,其中公比等于,1,的等比数列也是等差数列,.,(2),基本量法可解决等差(比)数列的有关问题。,解析,思维升华,例,1,设,a,n,是公比大于,1,的等比数列,,S,n,为数列,a,n,的前,n,项和,.,已知,S,3,7,,且,a,1,3,3,a,2,,,a,3,4,构成等差数列,.,(1),求数列,a,n,的通项;,题型一等差数列、等比数列的综合问题,例,1,(2),令,b,n,ln,a,3,n,1,,,n,1,2,,,,求数列,b,n,的前,n,项和,T,n,.,解析,思维升华,解析,思维升华,解,由于,b,n,ln,a,3,n,1,,,n,1,2,,,,,由,(1),得,a,3,n,1,2,3,n,,,b,n,ln 2,3,n,3,n,ln 2.,又,b,n,1,b,n,3ln 2,,,b,n,是等差数列,,例,1,(2),令,b,n,ln,a,3,n,1,,,n,1,2,,,,求数列,b,n,的前,n,项和,T,n,.,解析,思维升华,例,1,(2),令,b,n,ln,a,3,n,1,,,n,1,2,,,,求数列,b,n,的前,n,项和,T,n,.,解析,思维升华,例,1,(2),令,b,n,ln,a,3,n,1,,,n,1,2,,,,求数列,b,n,的前,n,项和,T,n,.,等差数列和等比数列可以相互转化,,若数列,b,n,是一个公比为,q(q0),的正项等比数列,则,log,a,b,n,(a0,,,a1),就是一个等差数列,其公差,d,log,a,q,;,解析,思维升华,例,1,(2),令,b,n,ln,a,3,n,1,,,n,1,2,,,,求数列,b,n,的前,n,项和,T,n,.,反之,若数列,b,n,是一个公差为,d,的等差数列,则,(a0,,,a1),就是一个等比数列,其公比,q,a,d,。,跟踪训练,1,已知等差数列,a,n,的首项,a,1,1,,公差,d,0,,且第,2,项、第,5,项、第,14,项分别是等比数列,b,n,的第,2,项、第,3,项、第,4,项,.,(1),求数列,a,n,与,b,n,的通项公式;,解,由已知有,a,2,1,d,,,a,5,1,4,d,,,a,14,1,13,d,,,(1,4,d,),2,(1,d,)(1,13,d,),,解得,d,2(,因为,d,0).,a,n,1,(,n,1)2,2,n,1.,又,b,2,a,2,3,,,b,3,a,5,9,,,数列,b,n,的公比为,3,,,b,n,33,n,2,3,n,1,.,c,n,2,b,n,23,n,1,(,n,2).,c,1,c,2,c,3,c,2 013,=,c,1,(,c,2,c,3,c,2 013,),解析,思维升华,题型二数列的通项与求和,解析,思维升华,题型二数列的通项与求和,一般,求,数列的通项往往要构造数列,此时要从证的结论出发,这是很重要的解题信息,.,解析,思维升华,题型二数列的通项与求和,解析,思维升华,例,2,(2),求通项,a,n,与前,n,项的和,S,n,.,解析,思维升华,例,2,(2),求通项,a,n,与前,n,项的和,S,n,.,解析,思维升华,例,2,(2),求通项,a,n,与前,n,项的和,S,n,.,求和看通项,由通项公式的特点选择合适的求和方法,,本题选用的,是,错位相减法,常用的还有分组求和,裂项求和,.,(,a,n,0),,,a,1,1.,即,(,a,n,a,n,1,)(,a,n,a,n,1,1),0,,,a,n,a,n,1,0,,,a,n,a,n,1,1(,n,2).,数列,a,n,是以,1,为首项,以,1,为公差的等差数列,.,T,n,b,1,b,2,b,3,b,n,课堂小结,1,、常见题型:,2,、注意点:,(,1,)等比数列求和要讨论,q,;,(,2,)由,s,n,求,a,n,要讨论,n,。,3,、解题时,要注意思想方法的应用,如函数思想,分类讨论、转化化归等。,
展开阅读全文