资源描述
又能,1理解等差数列、等差中项的概念掌握等差数列的通项公式与前,n,项和,2能在具体的情境中识别数列的等差关系,并能运用有关知识解决相关,问题了解等差数列与一次函数的关系,第2课时 等差数列,【命题预测】,等差数列既是一个重要的知识点,在高考中仍将受到关注,考查题型既有填空题也有解答题,且既有容易题、中等题,也有难题客观题突出,“,小而巧,”,,主要考查等差数列性质的灵活运用及对概念的理解,主观题都,“,大而全,”,,着重考查函数方程、等价转化、分类讨论等重要的数学思想,【应试对策】,1,等差数列的定义是判断一个数列是否为等差数列的依据若有等差数列,a,n,,,则由定义知,当,n,2,时,有,a,n,a,n,1,d,;,反之,若数列,a,n,满足,a,n,a,n,1,d,(,d,是常数,,,n,2),或,a,n,1,a,n,d,(,d,是常数,,,n,N,*,),,则数列,a,n,是等差数列但是,如果仅知道一个数列,a,n,的前三项满足,a,3,a,2,a,2,a,1,,,此时不能判定该数列是等差数列,2对于等差数列的通项公式及前,n,项和公式,要注意从公式的正向、逆向以及变式等角度掌握它们等差数列的通项公式及前,n,项和公式联系着五个基本量,,“,知三求二,”,是一类最基本的运算题目在已知三数成等差数列时,可设这三个数依次为,a,d,,,a,,,a,d,或,a,,,a,d,,,a,2,d,,通常设为,a,d,,,a,,,a,d,这样的形式,这样有利于问题的求解,如果涉及四个数成等差数列时,可设为,a,3,d,,,a,d,,,a,d,,,a,3,d,的形式在具体处理问题时,要注意,“,对称设元,”,、,“,整体消参,”,和,“,设而不求,”,的方法,3在求解有关等差数列的问题时,要注意恰当地使用等差数列的性质,如果能适时注意题目中所给的已知条件间的关系,并且能充分利用相关性质,往往能起到事半功倍的效果,否则运算量就可能很大,尤其是在处理客观题目时,更是如此,【知识拓展】,1,由于等差数列的前,n,项和,S,n,na,1,d,,,可整理,S,n,n,2,(,a,1,),n,.,设,A,,,B,a,1,,,上式可写成,S,n,An,2,Bn,,,当,A,0(,即,d,0),时,,,S,n,是关于,n,的二次函数式(其中常数项为,0),,那么,(,n,,,S,n,),在二次函数,y,Ax,2,Bx,的图象上因此,当,d,0,时,数列,S,1,,,S,2,,,S,3,,,,,S,n,的图象为抛物线,y,Ax,2,Bx,上的一群孤立的点,1等差数列的定义,一般地,如果一个数列从第,2,项起,每一项与它的前一项的差等,于,,那么这个数列就叫做,,这个常数叫,做等差数列的,,公差通常用字母,表示,同一个常数,等差数列,公差,d,2等差数列的通项公式,如果等差数列,a,n,的首项是,a,1,,,公差是,d,,,那么根据等差数列的定义得到它,的通项公式为,.,思考:,已知等差数列,a,n,的第,m,项,a,m,及公差,d,,则它的第,n,项,a,n,为多少?,提示:,a,n,a,m,(,n,m,),d,(,n,,,m,N,*,),a,n,a,1,(,n,1),d,3等差中项,如果三个数,x,,,A,,,y,组成等差数列,那么,A,叫做,x,和,y,的,4等差数列的前,n,项和公式,如果等差数列,a,n,的首项为,a,1,,,公差为,d,,,那么它的前,n,项和为,或,.其推导方法是倒序相加法,又可变形为,S,n,pn,2,qn,,其中,p,,,q,a,1,,,a,n,成等差数列,S,n,pn,2,qn,.,等差中项,5等差数列的常用性质,(1),若,a,n,为等差数列,且,k,l,m,n,(,k,,,l,,,m,,,n,N,*,),,则,.,(2),S,m,,,S,2,m,,,S,3,m,分别为,a,n,的前,m,项,前,2,m,项,前,3,m,项的和,,S,m,,,S,2,m,S,m,,,S,3,m,S,2,m,也成,数列,a,k,a,l,a,m,a,n,等差,1,(2010江苏省海门中学调研),已知等差数列,a,n,满足:,a,1,8,,a,2,6.,若将,a,1,,,a,4,,,a,5,都加上同一个数,所得的三个数依次成等比数列,则所,加的这个数为_,答案:,1,2,(2010栟茶中学学情分析),已知等差数列,a,n,的公差为,d,(,d,0),,且,a,3,a,6,a,10,a,13,32,若,a,m,8,则,m,为_,答案:,8,3,(江苏省高考命题研究专家原创卷),设,S,n,为等差数列,a,n,的前,n,项和,,若,S,5,10,,S,10,5,则公差为_,解析:,设等差数列,a,n,的首项为,a,1,,公差为,d,.由题设得,即,解之得,d,1.,答案:,1,4设等差数列,a,n,的前,n,项和为,S,n,,若,S,3,9,,S,6,36,,则,a,7,a,8,a,9,_.,解析:,数列,a,n,为等差数列,,S,3,,,S,6,S,3,,,S,9,S,6,为等差数列,,2(,S,6,S,3,),S,3,(,S,9,S,6,),,S,3,9,,S,6,S,3,27,则,S,9,S,6,45,,a,7,a,8,a,9,S,9,S,6,45.,答案:,45,在等差数列,a,n,中,已知,a,1,2,,a,2,a,3,13,则,a,4,a,5,a,6,_.,解析:解法一:,设公差为,d,,则由 ,即 ,,得 .,故,a,4,a,5,a,6,3,a,1,(345),d,612,d,42.,解法二:,利用等差中项,,a,1,a,2,a,3,15.,3,a,2,15,,a,2,5,,d,a,2,a,1,3,,a,5,a,2,3,d,5914.,a,4,a,5,a,6,3,a,5,42.,答案:,42,5,1等差数列的判定常用方法:,利用定义,,a,n,a,n,1,d,(常数)(,n,2),利用等差中项,,即2,a,n,a,n,1,a,n,1,(,n,2)或利用,a,n,pn,q,.,2解填空题时,亦可用通项或前,n,项和直接判断,(1)通项法:若数列,a,n,的通项公式为,n,的一次函数,则,a,n,是等差数列,(2)前,n,项和法:若数列,a,n,的前,n,项和,S,n,是,S,n,An,2,Bn,的形式(,A,,,B,是常数),,则,a,n,为等差数列,【例1】,已知数列,a,n,的前,n,项和为,S,n,且满足,a,n,2,S,n,S,n,1,0(,n,2),,a,1,;(1),求证:是等差数列,;(2),求,a,n,的表达式,思路点拨:,(1)由,a,n,与,S,n,的关系先转化为,a,n,S,n,S,n,1,,,然后利用定义证明(2)先求,S,n,,再求,a,n,.,(1),证明:,a,n,S,n,S,n,1,(,n,2),又,a,n,2,S,n,S,n,1,,,S,n,1,S,n,2,S,n,S,n,1,,,S,n,0.,2(,n,2),由等差数列的定义知 是以 2为首项,以2为公差的等差数列,(2),解:,由(1)知 (,n,1),d,2(,n,1),22,n,,,S,n,当,n,2时,有,a,n,2,S,n,S,n,1,,又,a,1,a,n,变式1:,已知数列,a,n,中,,,a,1,,,通项,a,n,2 (,n,2,,n,N,),,数列,b,n,满足,b,n,(,n,N,),求证,:,数列,b,n,是等差数列并求出通项,b,n,.,证明:,b,n,,,而,b,n,1,b,n,b,n,1,1(,n,N,,,且,n,2),而,b,1,.,b,n,是首项为,,,公差为,1,的等差数列,b,n,b,1,(,n,1),1 (,n,1),1,n,等差数列的前,n,项和的公式有两种形式:,S,n,及,S,n,na,1,d,.公式中都是有四个量,只要知道其中的三个量便可以,求出剩下的一个量,等差数列的前,n,项和为,S,n,,若,S,12,84,,S,20,460,求,S,28,.,思路点拨:,(1)由已知列出关于,a,1,和,d,的方程组,求出,a,1,和,d,,即可求出,S,28,.(2)也可由等差数列的特点,由,S,n,an,2,bn,,求得,a,,,b,进而求,S,28,.,【例2】,解:解法一:,设等差数列,a,n,的首项为,a,1,,,公差为,d,,则,S,n,na,1,n,(,n,1),d,.,S,12,84,,S,20,460,,,,解得,S,n,15,n,n,(,n,1),42,n,2,17,n,.,S,28,2,28,2,17,281 092.,解法二:,由已知不妨设,S,n,an,2,bn,,,S,12,84,,S,20,460,,,,解得,S,n,2,n,2,17,n,,,S,28,2,28,2,17,281 092.,已知等差数列,a,n,的前三项为,a,4,3,a,,前,k,项的和,S,k,2 550,,求通项公式,a,n,及,k,的值,解:解法一:,由题意知,a,1,a,,,a,2,4,,a,3,3,a,,,S,k,2 550.由已知得,a,3,a,2,4,,a,1,a,2,公差,d,a,2,a,1,2.,a,n,22(,n,1)2,n,.又,S,k,k,a,1,d,,得,k,2 22 550,整理得,k,2,k,2 5500,解得,k,1,50,,k,2,51(舍去),所以,a,n,2,n,,,k,50.,变式2:,解法二:,由解法一得,a,1,a,2,,d,2,,a,n,22(,n,1)2,n,,,S,n,n,2,n,,,又,S,k,2 550,,k,2,k,2 550,,得,k,2,k,2 5500.,解得,k,50(,k,51,舍去,),a,n,2,n,,,k,50.,在解决某些题目时,利用等差数列的性质,有时能起到事半功倍的效果尤其要注意利用,“,若,m,,,n,,,p,,,k,N,,且,m,n,p,k,,则有,a,m,a,n,a,p,a,k,,其中,a,m,,,a,n,,,a,p,,,a,k,是数列中的项特别地,当,m,n,2,p,时,有,a,m,a,n,2,a,p,”,这条性质,【例3】,设等差数列,a,n,的前,n,项和为,S,n,,,已知,a,3,12,,S,12,0,,S,13,0中的最大,n,,便可求出,S,1,、,S,2,、,、,S,12,中的最大的一个,解:(1),由,得,d,0,,S,13,13,a,7,0,且,a,7,2)是否成立?2,a,n,a,n,k,a,n,k,(,n,k,0)是否成立?”,若是直接考查这些知识,考生对应用这些性质是熟悉的,但高考命题者的设计很有新意,在,a,2,a,4,a,9,中并不能直接对,a,2,、,a,4,、,a,9,的和式进行分拆而得出,a,5,,这就需要解题的智慧和分拆的技巧,增加了本题的难度.,【课本探源】,1 已知五个数成等差数列,它们的和为5,平方和为 ,求这五个数,分析:,根据等差数列的特点对称地设出五项,然后求出首项,a,1,与公差,d,.,解:,设第三个数即中间项为,a,,公差为,d,,,则五个数分别为,a,2,d,,,a,d,,,a,,,a,d,,,a,2,d,.,由已知条件得,解得,所求的五个数分别为,或,2 等差数列,a,n,和,b,n,的前,n,项和分别为,S,n,和,T,n,,且 (,n,N,*,),,则 _.,分析:,题中给出的是前,n,项和的比值,要求两项的比值 ,应想法用前,n,项和的比来表示项的比,解析:,因为,a,n,和,b,n,都是等差数列,,所以,答案:,点击此处进入 作业手册,
展开阅读全文