资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,湖北省秭归县教育科研信息中心,何 训 光,6.探索规律(1),北师大版数学教材七年级上册,第三章 整式及其加减,5.探索与表达规律,肇源五中 沈培玉,湖北省秭归县教育科研信息中心6.探索规律(1)北师大版数学教,谜语,日 历,一物生来真稀奇,,身穿三百多件衣,,每天给它脱一件,,年底只剩一张皮。,(打一日常用品),谜语日 历一物生来真稀奇,,如图,是一张残缺了一些日期的日历,你们能很,快地把它补充完整吗?,7,8,9,16,23,22,21,14,仔细观察,,15,周围的数与它都有着什么样的关系呢?,探究,1,如图,是一张残缺了一些日期的日历,你们能很789162322,议一议:,研究其它月份:,这样的方框中的数字关系也成立吗?,议一议:研究其它月份:这样的方框中的数字关系也成立吗?,这样存在的普遍规律,你能用数学方法来解释吗?,若中间这个数为,a,,则另,8,个数怎么表示,?,这,9,个数的和是多少?,a,?,?,?,?,?,?,?,?,这样存在的普遍规律,你能用数学方法来解释吗?若中间这个数为a,a,?,?,?,?,?,?,?,?,a+1,a-8,a-7,a-6,a+7,a+6,a+8,9a,a-1,若中间这个数为,a,,另,8,个数如何表示?,则这,9,个数的和为 ,,(a-8)+,(a-7),+(a-6)+,(a-1),+,a,+,(a+1),+(a+6)+,(a+7),+(a+8),= _,a?a+1a-8a-7a-6a+7a+6a+8,在 “,+”,字形区域内,,五个数之和,与,正中心数有何,关系,?,能用字母表示并验证这个关系吗,?“H”,形区域呢?,探究2,在 “+” 字形区域内,五个数之和与正中心数有何关系?,观察同一直线上相邻三数之和与最中间数有什么,关系?,规律,:,同一直线上相邻三数,之和,怎样用,字母,来表示和验证呢,?,=,中间数的,3,倍,观察同一直线上相邻三数之和与最中间数有什么关系? 规律:,1,、猜一猜、填一填,牛刀小试,(,1,),1,,,4,,,9,,,16,,,_ , _ , ,(,3,),1,,,1,,,2,,,3,,,5,,,8,,,13,,,_ , _ , ,(,2,),1,,,4,,,7,,,10,,,_ , _ , ,25,36,21,34,13,16,1、猜一猜、填一填牛刀小试(1) 1 ,4 ,9 ,16,现有一列数:,2,,,4,,,8,,,16,,,,,64,,,128,,,横线上是什么数?第,n,个数怎么表示?,32,2,n,2,、,想一想、找一找,现有一列数: 2,4,8,16, ,64,128,,1,、用棋子摆出下列一组图形:,(,1,)摆第一个图形用,_,枚棋子,摆第二个图,形用,_,枚棋子,摆第三个图形用,_,枚棋子;,(,2,)按照这种方式摆下去,摆第,n,个图形用,_,枚棋子,摆第,100,个图形用,_,枚棋子。,3,6,9,3n,300,思维训练,1、用棋子摆出下列一组图形:(1)摆第一个图形用_,2,、用火柴棒按下图的方式搭三角形,.,填写下表,:,3,5,7,9,11,2、用火柴棒按下图的方式搭三角形.填写下表:3 5 7,3,+2,+2,+2,+2,+2,3,5,7,9,11,2n+1,1+2,3+2+2+2+2+23 5 7 911 2n+1,1,张桌子可坐,6,人,按照图中规律摆下去,完成下表:,10,14,18,4n+,2,预览典例,8,10,2n+4,12,如果按照这种摆法,完成下列表格,1张桌子可坐6人,按照图中规律摆下去,完成下表:101418,对折次数与所得层数的变化关系表:,对折次数与所得折痕数的变化关系表:,将一张普通的纸对折,可得到一条折痕。继续对折,对折时每次折痕与上次的折痕保持平行。连续对折并观察完成下表。,2,4,8,16,1,3,7,15,2,n,2,n,-1,折一折 议一议, 对折次数与所得层数的变化关系表: 对折次数与所得折痕数,观察、比较,小 结,总结、验证,推理、分析,探索规律的一般思路:,观察、比较小 结总结、验证推理、分析探索规律的一般思,课后作业,1,、,习题,3.7,2,、课后延伸,(,1,),与家长分享你所发现的规律。,(,2,),试从生活中找出一种规律,,并用字母表示这个规律。,课后作业 1、习题3.72、课后延伸,祝你探索成功,祝你探索成功,再见,再见,
展开阅读全文