资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,第二章 物质结构基础,(Structure of Matter),原子之间的相互作用和结合,(Atomic Interaction and Bonding),基本键,合,(,Primary Interatomic Bonds),:金属、离子、共价和混合键,派生键,合,(,Secondary Bonding),原子结构,(Atomic Structure),原子,(Atom),的组成,原子核,+,核外电子,原子中电子的空间位置和能量,(Electrons in Atoms),前面内容总结复习,固体中的原子有序,(Perfections in Solids),固体中的原子无序,(Imperfections in Solids),固体中的转变,(Transformations in Solids),固体物质的表面结构,(Surface Structures of Solid Materials),前面内容总结复习,金属材料的结构和组成,Composition and Structure of Metallic Materials,材料的结构和组成是决定材料性能的基础。是合理地设计、制造和选用材料的基础。,无机非金属材料的结构和组成,Composition and Structure of Inorganic-nonmetalic Materials,高分子材料的结构和组成,Composition and Structure of Polymeric Materials,复合材料的结构和组成,Composition and Structure of Composite materials,前面内容总结复习,第三章,材料的组成和结构,Compositions and Structures of Materials,Materials property,材料的性能决定材料用途,本章对材料的,机械,性能、,热,性能、,电学,、,磁学,、,光学,性能以及耐腐蚀性,复合材料及纳米材料的性能进行阐述。,第四章,材料的性能,Mechanical property of materials,Stress and strain,Elastic deformation,Modulus,Viscoelasticity,Permanent deformation,Strength,Fracture,第四章,内容,4-1,固体材料的机械性能,4-2,材料的热性能,4-3,材料的电学性能,4-4,材料的磁学性能,4-5,材料的光学性能,4-6,材料的耐腐蚀性,4-7,复合材料的性能,4-8,纳米材料及效应,4,1,固体材料的机械性能,Chapter 7,Chapter 8,Chapter 9,(,stress and strain,),Learning Objectives,材料的形变,(,Deformation of materials,),(,Elastic deformation,and,Permanent deformation,),不同材料(金属、陶瓷和高分子)的机械行为,Mechanical Properties of Solid Materials,应力和应变,Mechanical states of materials,A,晶态,结构,,,B,较高的弹性,模量,和,强度,,,C,受力开始为弹性,形变,,接着一段塑性,形变,,然后断裂,总变形能很大,,D,具有较高的,熔点,。,4-1-1,材料的力学状态,1.,金属,(Metals),的力学状态,弹性模量随温度升高而降低?,某些金属合金,A,呈,非晶态合金,,,B,具有很高的硬度和强度,,C,延伸率很低而并不脆。,D,温度升高到玻璃化转变温度以上,粘度明显降低,发生晶化而失去非晶态结构。,2.,无机非金属,(nonmetals),的力学状态,A,玻璃相,熔点,低,热稳定性差,强度低。,B,气相(,气孔)的存在导致陶瓷的弹性,模量,和机械,强度,降低。,C,陶瓷材料也存在玻璃化转变温度,Tg,。,D,绝大多数无机材料在,弹性变形后立即发生脆性断裂,,总弹性应变能很小。,高模量,陶瓷,材料的力学特征,高硬度,高强度,低延伸率,3.,聚合物的力学状态,(Polymer),(,1,),非晶态聚合物,的,三种,力学状态,玻璃态,高弹态,粘流态,(,2,),结晶聚合物,的力学状态,A,结晶聚合物常存,在一定的,非晶,部分,也有,玻璃化转变。,B,在,T,g,以上,模量,下降不大,C,在,T,m,以上,模量,迅速下降,D,聚合物分子量很大,,T,m, T,f,,则熔融之后即转变成,粘流态,T,m,、,T,f,玻璃化温度,(T,g,),是非晶态塑料使用的,上限,温度,是橡胶使用的,下限,温度,熔点,(T,m,),是结晶聚合物使用的,上限,温度,(stress and strain),4-1-2,应力和应变,If a load is static or changes relatively slowly with a time and is applied uniformly over a cross section or surface of a member, the mechanical behavior may be ascertained by a simple stress-strain test. These are mostly commonly conducted for materials at room temperature.,应力和应变,(stress and strain),应力,:,1.,应力,和,应变,的定义,工程应力(名义应力),:面积为材料受力前的初始面积,(A,0,),的应力。,真实应力,:面积为受力后的真实面积,(A,T,),的应力。,应变,:,单位面积上的,内力,,其值与外加的力相等。,受到外力不惯性移动时,几何形状和尺寸的变化。,应力,=,外加力,F/,面积,A,4-1-2,2.,材料的,应变方式,各向同性材料,三种基本类型:,还有,扭转和弯曲,形变。,简单拉伸,tension,简单剪切,shear,均匀压缩,compression,F,垂直于截面、大小相等、方向相反并作用于同一直线上,工程应变,(,),:,(,),= (,l,l,0,) /,l,0,=,l,/,l,0,l,0,l,(,1,),简单拉伸,(tension),工程应力,:,=F / A,0,单位,MPa,A standard tensile specimen,Tension,is one of the most common mechanical stress-strain test.,the tension test,can be used to ascertain several mechanical,properties of materials that is very important in design.,Sometimes it is more meaningful to use a true stresstrue strain scheme. True,stress,T,is defined as the load,F,divided by the instantaneous cross-sectional area,Ai,over which deformation is occurring (i.e., the neck, past the tensile point), or,(7.15),Furthermore, it is occasionally more convenient to represent strain as true,strain,T, defined by,(7.16),If no volume change occurs during deformation, that is, if,A,i,l,i,=,A,0,l,0,(7.17),true and engineering stress and strain are related according to,(7.18a),(7.18b),Equations 7.18a and 7.18b are valid only to the onset of necking; beyond this point,true stress and strain should be computed from actual load, cross-sectional area,and gauge length measurements.,Section 7.7,工程应力,:,=F / A,0,真实应力,T,:,T,=F / A,T,A,0,A,T,工程应力,小于,真实应力,T,同一拉伸实验中,,工程应力,(或,名义应力,)与,真实应力,比较哪个数值大?,F,与截面平行、大小相等,方向相反且不在同一直线上的两个力,切应变:,=tan,(,2,),简单剪切,(shear),切应力:,s,(,),= F / A,0,压缩应变,V,:,Compression,stress-stain tests may,be conducted when in-service,forces are of this type. A com-,-pression test is conducted in a,manner similar to the tension,test, except that the force is,compressive and the specimen,contrasts along the direction,of the stress.,V,= (,V,0,- V,) /,V,0,=,V/ V,0,(,3,),均匀压缩,(compress),F,:周围压力,p,实心,W=,.d,0,3,/16,空心,W=,.d,0,3,(,1- d,1,4,/d,0,4,),/16,切应变,=tg,=,d,0,/ (2,l,0,),100%,(,4,),扭转,Torsional deformation,切应力,=M / W,M:,扭矩,; W:,截面系数,(,5,),弯曲,Flexural deformation,弯矩,M,最大扰度,max,曲线(,F,l,)转换为应力,应变曲线,(,),B .,采用适当的坐标转换因子,= F /,A,0,和,=,l,/,l,0,3.,应力,应变曲线,(Stress-strain curve),常用的试验方法:,A .,以匀速拉伸试样,用测力装置测量,F,,伸长计同时,测量,l,。,弹性,-,均匀塑性,型,纯弹性,型,弹性,-,不均匀塑性,型,弹性,-,不均匀塑性,-,均匀塑性,型,弹性,-,不均匀塑性(屈服平台),-,均匀塑性,型,拉伸,应力,应变曲线(,),五种类型,下一页,(1),纯弹性型,A,陶瓷、岩石、大多数玻璃,B,高度交联的聚合物,C,以及一些低温下的金属材料。,(2),弹性,-,均匀塑性型,A,许多金属及合金、,B,部分陶瓷,C,非晶态高聚物。,(3),弹性,-,不均匀塑性型,A,低温和高应变速率下的面心立方金属,,B,某些含碳原子的体心立方铁合金,C,以及铝合金低溶质固溶体。,返回,(4),弹性,-,不均匀塑性,-,均匀塑性型,A,一些结晶态高聚物,B,未经拉伸的线型非晶态高聚物,(5),弹性,-,不均匀塑性(屈服平台),-,均匀塑性型,A,一些体心立方铁合金,B,许多有色金属合金。,返回,应力,应变,实例,4-1-3,弹性形变,Chapter 7,Chapter 8,Elastic Deformation,Elastic deformation,Modulus of,elasticity,(Hook) (metal and ceramics),Rubberlike elasticity (,elastomer,),Viscoelasticity,(polymer,),弹性形变,Elastic deformation,弹性形变有普遍性,A,任何材料,起始,总是有弹性形变,;,B,有一定的弹性形变,范围,,它取决,于应力的大小和形态。,1,、,Hooke,定律和弹性模量,Hooks raw and,Modulus,of elasticity,弹性形变的,力学特点,:,小形变、可回复,Hooke,定律,E,E -,弹性模量,量纲,GN/m,2, Gpa,弹性模量表示材料对于弹性变形的抵抗力,弹性模量,正应力在,状态下,:,正弹性模量,E,纯剪切力,作用下,:,切弹性模量,G,均匀压缩,:,体积弹性模量,K,0,(,V,V,0,),泊松比,为缩短应变与伸长应变的比值,,=- e,y,/e,x,转化关系,E=3G/1+G/3K,K=E/3(1-2,),E=2G(1+,),E=3K(1-2,),E=3K(1-2,),材料的弹性模量表示材料对于弹性变形的抵抗力,主要取决于原子间的结合能力,构件刚度,金属的模量,值主要取决于,10-10,2,A,晶体中,原子,的本性、电子结构,B,原子的,结合力,、,C,晶格,类型以及晶格常数等。,D,合金元素降低弹性模量。,陶瓷,材料具有较高模量、原因,10-10,2,A,原子,键合,的特点,特种陶瓷,B,构成材料,相,的种类,分布、比例及气孔率有关。,高分子材料,低模量,FIGURE 7.19,Typical stressstrain behavior to fracture for aluminum,oxide and glass,.,查表知泊松比,=0.34,查表知模量,E,=97GPa,例题,4-4.,一硫化的橡胶球受到,6.89MPa,的静水压力,,,直径减少了,1.2%,,而相同材质的试棒在受到,516.8KPa,的拉应力时伸长,2.1%,,则此橡胶棒的,泊松比,为多少?,E=,/,=516.8Kpa/2.1%=24.6Mpa,K=,/(,V/V),So,=0.5(1-E/3K),=6.89Mpa/(1-0.988,3,)/1=193.7Mpa,E=3K(1-2,),=0.51-(24.6MPa)/(3,193.7MPa)=0.48,例题,金属晶体、离子晶体、共价晶体,等的变形通常表现为,普弹性,,主要的特点是:,A,应变在应力作用下瞬时产生,,B,应力去除后瞬时消失,,C,服从虎克定律。,高分子,材料通常表现为,高弹性和粘弹性,高弹性,,即,橡胶弹性,(rubberlike elasticity),弹性模量小、形变大,。,A,一般材料,如铜、钢等,形,变量最大为,1,左右,,B,而橡胶的高弹性形变很大,,可拉伸至,5 10,倍。,2.,有机聚合物的弹性、粘弹性,Elasticity,and,Visco-elasticity,of Polymers,C,橡胶的弹性模量则只有一般,固体物质的万分之一左右,,即,10100,10,4,Pa,。,弹性模量随温度升高而上升,,,一般固体的模量则随温度的提高而下降。,(,2,),粘弹性,viscoelasticity,静态,粘弹性,固定应力,A,蠕变,(creep),开尔文,模型(,Kelvin model),并联,在蠕变过程中形变,是时间的函数。即柔量,D,是时间的函数,D (t) =,(t) /,形变随时间而增加,动态粘弹性,Dynamic viscoelasticity,(高聚物),周期性、交变应力,在周期性应力作用下,模量,E,可采用,复数,表示式。,E*,=,E ,+,i,E ,内耗值,E/E,的量度:,tan,=,E ,/,E ,tan,,,E ,,,E ,与频率的关系,取决于温度和荷载的频率,3,、,滞弹性,无机固体和金属的与时间有关的弹性,比例极限,(proportional limit),弹性变形时应力与应变严格成,正比,关系的上限应力,p,=,F,p,/,S,0,条件比例极限,tan,/tan,=150%,p50,代表材料对极微量塑性变形的抗力,切线,4,、,弹性极限与弹性比功,(金属),作业题,中文书:,4-1,(铝的一些参数见表,3-9,);,4-3,;,4-7,(铜的弹性模量见表,4-1,),英文书:,7.20,;,8.24,(参看英文书,8.11,节),
展开阅读全文