《DAAD转换》PPT课件 (2)

上传人:仙*** 文档编号:244949587 上传时间:2024-10-06 格式:PPT 页数:43 大小:500KB
返回 下载 相关 举报
《DAAD转换》PPT课件 (2)_第1页
第1页 / 共43页
《DAAD转换》PPT课件 (2)_第2页
第2页 / 共43页
《DAAD转换》PPT课件 (2)_第3页
第3页 / 共43页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,回顾,:,概述,过程通道:计算机和生产过程之间设置的信息传送和转换的连接通道。(,AI,、,AO,、,DI,、,DO,),微机控制系统组成框图,回顾,:,模拟量输入通道,模拟量输入通道的一般组成,一般由信号处理、多路转换器、放大器、采样,/,保持器和,A/D,转换器组成,3 D/A,与,A/D,转换技术,1/22,D/A,转换器(,Digital to Analog Converter,,,DAC,),是一种能把数字量转换成模拟量的电子器件,A/D,转换器(,Analog to Digital Converter,,,ADC,),则相反,它能把模拟量转换成相应的数字量。,3 D/A,转换技术,2/22,D/A,转换器的组成,基准电压(电流),模拟二进制数的位切换开关,产生二进制权电流(电压)的精密电阻网络,提供电流(电压)相加输出的运算放大器,(010mA,420mA,或者,TTL,CMOS,),3 D/A,转换技术,3/22,D/A,转换器的原理,转换原理可以归纳为“按权展开,然后相加”。因此,,D/A,转换器内部必须要有一个解码网络,以实现按权值分别进行,D/A,转换。,解码网络通常有两种:二进制加权电阻网络和,T,型电阻网络。,3 D/A,转换技术(,4/22,),4,位权电阻网络,D/A,转换器原理图,3 D/A,转换技术(,5/22,),E,为基准电压,为,晶体管位切换开关,受二进制各位状态控制,相应位为“,0”,,开关接地,相应位为“,1”,,开关接,E,为权电阻网络,其阻值与各位权相对应,权越大,电阻越大,(,电流越小,),,以保证一定权的数字信号产生相应的模拟电流,运算放大器的虚地按二进制权的大小和各位开关的状态对电流求和,3 D/A,转换技术(,6/22,),设输入数字量为,D,,,采用定点二进制小数编码,,D,可,表示为:,当 时,开关接基准电压,E,,,相应支路产生的电流为,当 时,开关接地,相应支路中没有电流。,因此,各支路电流可以表示为:,这里,3 D/A,转换技术(,7/22,),运算放大器输出的模拟电压为,可见,,D/A,转换器的输出电压,U,正比于输入数字量,D,缺点:位数越多,阻值差异越大,3 D/A,转换技术(,8/22,),4,位,T,型电阻网络(,R-2R,),D/A,转换器原理图,3 D/A,转换技术(,9/22,),从,节点,a,b,c,d,向右向上看,其等效电阻均为,2R,位切换开关受相应的二进制码控制,相应码位为“,1”,,开关接运算放大器虚地,相应码位为“,0”,,开关接地。,流经各切换开关的支路电流分别为,,,,,各支路电流在运算放大器的虚地相加,3 D/A,转换技术(,10/22),运算放大器的满度输出为,这里满度输出电压,(,流,),比基准电压,(,流,),少了,1/16,,是因端电阻常接地造成的,没有端电阻会引起译码错误,对,n,位,D/A,转换器,而言,其输出电压为,3 A/D,转换(,11/22,),常用,A/D,转换方式,:,逐次逼近式:转换时间短,抗扰性差(电压比较),ADC0809,(,8,位),,AD574,(,12,位),双斜率积分式:转换时间长,抗扰性好(积分),MC14433,(,11,位),,ICL7135,(,14,位),计数比较式:转换速度慢,抗扰性差,较少采用,3 A/D,转换技术(,12/22,),逐次逼近式,A/D,转换原理图,3 A/D,转换技术(,13/22,),采用对分搜索原理来实现,A/D,转换,主要由逐次逼近,寄存器,SAR,、,D/A,转换器、电压比较器、时序及控制逻辑等部分组成,工作过程:逐次把设定在,SAR,中的数字量所对应的,D/A,转换器输出的电压,与要被转换的模拟电压进行比较,比较时从,SAR,中的最高位开始,逐次确定各数码位是“,1”,还是“,0”,,最后,,SAR,中的内容就是,与输入的模拟电压对应的二进制数字代码,3 A/D,转换技术(,14/22,),以,4,位,A/D,转换器为例,说明其逐次逼近过程的原理:,LSB,所代表的信号电压为,0.25v(,满量程,4/24),,模拟输入电压为,1.8v,这里误差为,0.05v,。,SAR,位数越多,越逼近,,,但转换时间也越长,3 A/D,转换技术(,15/22,),双,斜率积分式,A/D,转换原理图,3 A/D,转换技术(,16/22,),工作原理,:,固定时间,T,内对模拟输入电压 积分,对基准电源反向积分,直到电容放电完毕,记录反向积分,时间,T1,模拟输入电压与参考电压的比值就,等于,上述两个时间值之比,应用于信号变化慢,输入速度低,精度要求高,干扰重,3 D/A,与,A/D,转换技术(,17/22,),A/D,转换器的主要技术指标,分辨率,能对转换结果发生影响的最小输入量,通常用数字量的位数来表示,(,如,:8,位或,1/28=0.4%,LSB,),分辨率越高,转换时对输入模拟信号的变化反应就越灵敏,量程,(,与,/,全一值区别,LSB),所能转换的电压范围,3 D/A,与,A/D,转换技术(,18,),精度,转换后所得结果相对于实际值的准确度,有绝对精度和相对精度之分,常用数字量的位数作为度量绝对精度的单位,,用百分比表示相对精度,转换时间,积分型 毫秒级,逐次比较 微秒级,(1200),3 D/A,与,A/D,转换技术(,19,),输出逻辑电平,多数与,TTL,电平配合,(,电平规范,0-2.2v),应注意是否要对数据进行锁存等,工作温度,较好的 ,,;,差的,对基准电源的要求,电源精度,3 D/A,与,A/D,转换技术(,20,),D/A,转换器的主要技术参数,分辨率:同,A/D,稳定时间,输入数字信号的变化是满量程时,输出信号达到稳定(离终值,1/2LSB,),所需的时间,ns,或,m,s,输出电平,不同型号其输出电平相差很大,510v;2430v,或者,20mA,3A,输入编码:二进制码、,BCD,码、双极性时的各种码等,3 D/A,与,A/D,转换技术(,20+,),满度,LSB,全,1,值,LSB/2,A/D,跃变点,p50,表,3-5,3 D/A,与,A/D,转换技术(,21,),调零和,增益校准,大多数转换器都要进行调零和增益校准,一般先调零,然后校准增益,这样零点调节和增益调整之间就不会相互影响。,调整步骤:首先在“开关均关闭”的状态下调零,然后再在“开关均导通”的状态下进行增益校准,3 D/A,与,A/D,转换技术(,22,),D/A,转换器的调整,调零:设置一定的代码,(,全零,),,使开关均关闭,然后调节调零电路,直至输出信号为零或落入适当的读数(,1/10LSB,范围内,),为止,增益校准:设置一定的代码,(,全,1),,使开关均导通,然后调节增益校准电路,直至输出信号读数与满度值减去一个,LSB,之差小于,1/10LSB,为止,A/D,转换技术(,23,),A/D,转换器的调整,调零:将输入电压精确地置于使“开关均关闭”的输入状态对应的输入值高于,1/2LSB,的,电平上,然后调节调零电路,使转换器恰好切换到最低位导通的状态,增益校准:将输入电压精确地置于使“开关均导通”的输出状态对应的输入值低,3/2LSB,的,电平上,,然后调节增益校准电路,使输出位于最后一位恰好变成导通之处,3 A/D,转换技术(,23+,),满度,10V,量程,010V;,12bitA/D;,LSB=10/2,12,=2.44mV,全,1,值,=9.9976,LSB/2=1.22mV,A/D,跃变点,=,全,1,值,-LSB/2=9.9963V,3 A/D,转换技术(,23+,),继续,:,增益校准,:,当输入电压为,:,全,1,值,-LSB/2=9.9963V,时,调节校准电路使最后一位恰好导通,读数从,111111111110,变成,111111111111,调零,:,输入电压为,LSB/2=1.22mV,时,调节校准电路使最后一位恰好导通,读数从,0000000000000,变成,000000000001,内容回顾,D/A,转换器的方法,:,权电阻网络图,梯形电阻网络原理图,A/D,转换器的方法,:,逐次逼近原理图,双斜率积分式原理图,A/D,转换器的主要技术指标,分辨率,;,量程,;,绝对精度,;,相对精度,;,转换时间,;,输入电平,;,温度,;,基准电,源,D/A,转换器的主要技术指标,分辨率,;,稳定时间,;,输出电平,;,输入编码,调零与增益校准,全,1,值,;LSB;LSB/2;3/2LSB;A/D,跃变点,D/A,1/10LSB;,满量程,-LSB,1/10LSB,A/D,1/2LSB;,满量程,-3/2 LSB,模数转换的原理误差,取样量化导致信息丢失。这主要来自两个方面的原因,其一:取样,使得我们用时间轴上的有限时间点来代替原模拟信号的无限连续时间点;其二:量化,使得我们用幅度轴上有限位数(模数转换器的有限位数)来代替模拟信号的无限位数。这样两个因素导致我们无法获得真实模拟信号中的信息,或者说:破坏了模拟信号的完整性。同时要指出的是:这是一个原理性的误差源,若要想消除这个误差,只有提高采样速率,增加模数转换器的准确度(提高转换器的位数),当这两个参数达到极限时,我们就可以复现出模拟信号。然而,十分不幸的是:这两个参数在现实世界总是处在相互矛盾之中。就我们目前的技术而言,还无法和谐、统一的处理它们。,在,NI,可提供的产品中:,NI PXI-5154,是目前采样速率最高的模数转换器,但分辨率只有,8bits,。,NI PXI-4071,是目前测量分辨率最高的模块,,26bits,分辨率时,每秒,7,次读数。,NI PXI-5922,则是高速度、高分辨率二者兼顾最好的模数转换器,,24bits,分辩率时,500KHz,采样速率;,16bits,分辨率时,15MHz,采样率。,模数转换器的位数越多越好吗?,为了消除模数转换器的原理误差,应该尽可能的提高采样速率和分辨率,这个概念是对的,但是模数转换器的分辨率越高就意味着测量准确度越高吗?有人说:,NI PXI-4461,(,NI USB-9233,)都具备,24bits,的分辨率,所以测量精度就很高。这对吗?绝对不对!这是一个极其错误的概念,它将精密度与准确度(精度)混为一谈了,精密度高不等于精度高(正是由于避免混用的原因,精度这个词已经不建议使用了)。可以说模数转换器的分辨率高,测量的精密度好,动态范围大。,以,NI USB-9233,为例,从它的产品介绍来看:它的准确度在,0,60,度的环境温度范围内是:,0.1dB,。这个数值是比较差的,即便是与它的动态范围相比,其准确度也就在:正、负,0.1,。实际上,,14bits,以上的模数转换器都可以达到这样的技术性能,.,但是要注意,它的稳定性很好,对比数据可以发现,它的稳定性指标要比准确度指标好,100,倍,所以适合做精密测试。,那,干什么还要用,24bits,的模数转换器呢?,其实这来自于测量不同信号的需求,我们知道:声音和振动冲击信号的(瞬时值)变化范围比较大,比如:声音的最大变化范围可以是:,0,140dB,(通常最大为,120dB,)。为了测量这些信号需要再同一个量程下实现完整的测量,这就需要这种动态范围较大的模数转换器,而相对转换准确度的要求并不是很高,比如:工业声级计的测量准确度为:,1dB,。,所以这类模数转换器也被称为:,DSA,(动态信号采集卡)。,NI USB-9233,等就是专为这些用途设计的,当然也包含了信号调理部分(,IEPE,激励源)。顺便提一下,NI USB-9233,的替代产品,NI USB-9234,,它的技术性能要好很多,并且可以使用在,AC,或,DC,耦合方式下。但价格也要多,2000,元。,上图中左边是,NI USB-9233,的准确度指标,右边是,NI USB-9234,准确度的技术指标
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!