数字图像处理-图像分割-讲义课件

上传人:沈*** 文档编号:243962502 上传时间:2024-10-01 格式:PPT 页数:37 大小:1,023.72KB
返回 下载 相关 举报
数字图像处理-图像分割-讲义课件_第1页
第1页 / 共37页
数字图像处理-图像分割-讲义课件_第2页
第2页 / 共37页
数字图像处理-图像分割-讲义课件_第3页
第3页 / 共37页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,单击此处编辑母版标题样式,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,数字图像处理,图像分割,数字图像处理图像分割,图像分割概论,图像分割的目的是理解图像的内容,提取出我们感兴趣的对象。,图像分割按照具体应用的要求和具体图像的内容将图像分割成一块块区域。,图像分割是模式识别和图像分析的预处理阶段。,通常图像分割采用聚类方法,假设图像中组成我们所感兴趣对象的像素具有一些相似的特征,如相同的灰度值、相同的颜色等。,传统的图像分割技术:,基于像素灰度值的分割技术,基于区域的分割技术,基于边界的分割技术,图像的描述,包括边界和区域的描述,对图像区域的操作数学形态学,图像分割概论 图像分割的目的是理解图像的内容,提取出我们感兴,灰度阈值分割法,灰度阈值分割法是最古老的分割技术,只能应用于图像中组成感兴趣对象的灰度值是均匀的,并且和背景的灰度值不一样。,事先决定一个阈值,当一个像素的灰度值超过这个阈值,我们就说这个像素属于我们所感兴趣的对象;反之则属于背景部分。,这种方法的关键是怎样选择阈值,一种简便的方法是检查图像的直方图,然后选择一个合适的阈值。,如果图像适合这种分割法,那么图像的直方图在表示对象和背景的小范围灰度值附近出现一个高峰值。适合这种分割法的图像的直方图应是双极模式,我们可以在两个峰值之间的低谷处找到一个合适的阈值。,单一阈值方法也不适合于由许多不同纹理组成一块块区域的图像。,灰度阈值分割法 灰度阈值分割法是最古老的分割技术 只能应用于,用如下所示的循环迭代策略得到阈值,假设图像中处于四个角的像素是属于背景部分,其它像素属于感兴趣对象,然后定义一个背景灰度和对象灰度的初始值。,通过下面的公式循环迭代直至前后两次循环得到的阈值,T,i,+1,和,T,i,相,差非常小,循环过程停止。,u,i,background,和,u,i,object,分别是循环第,i,次得到的背景灰度值和对象灰度值。,这种单一阈值分割方法一种拓展就是将图像分成一个个子区域,不同的子区域采用不同的阈值。,将图像分成6464重叠的子区域,并在每个子区域中检测区域的直方图是不是双极模式,如果一个区域的直方图不是双极模式,则判定该区域完全属于背景部分或对象部分。,用如下所示的循环迭代策略得到阈值假设图像中处于四个角的像素,原始图像,分割结果(T=170),原始图像分割结果(T=170),基于纹理的分割方法,什么是纹理,纹理是图像中一个重要而又难于描述的特征,至今还没有精确的纹理定义。,纹理图像在局部区域内呈现了不规则性,而在整体上表现出某种规律性。,纹理的组成,一是组成图像纹理的基元,另一个是这些基元之间的空间分布关系。,纹理基元的空间排列可能是随机的,也可能是相互之间互相依赖,这种依赖性可能是有结构的,也可能是按某种概率分布排列的,也可能是某种函数形式的。,纹理的描述,图像纹理可以定性用许多词汇来描述,如粗糙、精细、光滑、方向性、规则性和粒度等等。,但是遗憾的是要将这些语义描述转化为数学模型不是一件容易的事。,一般来说图像纹理由纹理中相邻像素之间的灰度变化及纹理基元模板来描述。,基于纹理的分割方法 什么是纹理纹理是图像中一个重要而又难于描,分析和测量纹理的算法(两类),从图像有关属性的统计分析出发,统计分析方法,结构分析方法,找出纹理基元,以后再从结构组成上探索纹理的规律,也还有直接去探求纹理构成的结构规律。,一般用统计结构尺度来量化纹理的特征,在统计结构尺度中我们不仅仅需要抓住或测量纹理在一个像素点邻近区域的变化,而且还需考虑纹理的空间结构组织,,换言之,不仅仅需要考虑相邻两个像素之间的灰度变化,还要考虑它们之间的空间关系。,在标注一个像素点的纹理特征时很可能是多维数据,如距离、方向、灰度变化等等。,分析和测量纹理的算法(两类)从图像有关属性的统计分析出发,数字图像处理-图像分割-讲义课件,纹理分析的自相关函数方法,自相关函数的定义,若有一幅图像,f,(,i,j,),i,j,=0,1,N,-1,它的自相关函数为:,如果图像中灰度基元的面积比较大,则自相关函数随距离的增大,下降速度比较慢,如果灰度基元中灰度呈周期变化,则自相关函数的升降也呈周期性变化。,纹理分析的自相关函数方法 自相关函数的定义若有一幅图像f(,纹理分割Hurst函数,Hurst系数是单一数值,它的计算过程如下:,将一个圆放在一个像素点上,逐渐增大圆的半径直至覆盖我们所需的邻域;,检查这个圆所覆盖范围内的所有像素点的灰度值,最大和最小的灰度值定义了一个灰度值范围。,不同相邻像素个数的对数值相对于半径的对数值就为各相邻像素的Hurst系数。,当纹理变化比较小时,Hurst系数也比较小,反之,Hurst系数比较大。,其中,N,为不同相邻像素的个数,,s,是不同像素点离参考像素点的距离。,各个像素离参考像素点,a,的距离为:,N,=7,纹理分割Hurst函数 Hurst系数是单一数值,它的计,灰度共生矩阵的纹理分析,灰度共生矩阵,直方图是研究单个像素的灰度统计分布特性,但不能很好地反映出像素之间空间相关性的规律。,;,图像纹理的一个重要特征是局部区域中灰度的空间分布特性和像素位置之间的空间相关性;,因此希望能找出两个像素的联合分布的统计形式。,图像,I,为映射:,:水平空间定义域,:垂直空间定义域,:灰度值的集合,灰度共生矩阵为概率矩阵:,其中,P,ij,为,距离为,d,的两个像素,一个像素的灰度值为,i,,另一个像素灰度值为,j,的情况在整幅图像中出现的频率。,灰度共生矩阵的纹理分析 灰度共生矩阵直方图是研究单个像素的,灰度共生矩阵表示空间灰度值依赖性的概率,这个灰度共生矩阵是对称的,;,不仅仅和两个像素之间的距离有关,还跟两个像素之间的空间角度有关。,44的图像的位置坐标,上图,水平方向距离为,1,的像素对,灰度共生矩阵表示空间灰度值依赖性的概率,这个灰度共生矩阵是,如果角度45度以为间隔,,P,ij,的形式如下,其中符号,#,表示集合中元素的个数。上述公式中距离的尺度为,如果角度45度以为间隔,Pij的形式如下 其中符号#表示集合,一个,4,4,图像,左边图像相邻像素角度为0、90、135、45度、距离为,1,的灰度共生矩阵,一个44图像 左边图像相邻像素角度为0、90、135、45,灰度共生矩阵抽取出来的纹理特征系数,二阶矩,二阶矩是图像灰度分布均匀性的度量。,二阶矩是灰度共生矩阵像素值平方和,所以也称为能量。,纹理较粗,此时二阶矩值,f,1,较大,可以理解为粗纹理含有较多的能量;反之,二阶矩值,f,1,较小,即细纹理含有较少的能量。,熵,熵值是图像所具有的信息量的度量,若图像没有任何纹理,则灰度共生矩阵几乎为零,则熵值,f,2,接近为零;,若图像充满细纹理,则,P,ij,的值近似相等则该图像的熵值,f,2,最大,若图像中分布较少的纹理,,P,ij,的数值差别较大,则该图像的熵值,f,2,较小,灰度共生矩阵抽取出来的纹理特征系数 二阶矩 二阶矩是图像灰,对比度,图像的对比度可以理解为图像的清晰度,即纹理清晰程度。在图像中,纹理的沟纹越深,则其对比度,f,3,越大,图像的视觉效果越是清晰。,相关,相关使用来衡量灰度共生矩阵的元素在行的方向或列的方向的相似程度。,上述4个统计参数为应用灰度共生矩阵进行纹理分析的主要参数,可以组合起来,成为纹理分析的特征参数使用。,例如,某图像具有水平方向的纹理占主导地位,则图像在0度的灰度共生矩阵的相关值往往大于90、135、45度的灰度共生矩阵的相关值。,对比度 图像的对比度可以理解为图像的清晰度,即纹理清晰程度,区域生长法,什么是区域,一般用以下性质来定义区域:,图像中属于某个区域的像素点必须加以标志,当应用区域生长法来分割图像时,最终应该不存在没有被标注的像素点。,在同一区域的像素点必须相连。,这就意味着我们可以从现在所处的像素点出发,按照某种连接方式到达任何一个邻近的像素点。常用的有两种各向同性连通方式:四连通和八连通。,区域之间不能重叠,也就是说一个像素只能有一个标注。,在区域,R,i,中每一个像素点必须遵从某种规则,P,(,R,i,)。,例如我们说,P,(,R,i,)为真,,当区域,R,i,中所有像素具有相似的灰度(相似性在一定的范围内)。,两个不同的区域,R,i,和,R,j,具有的规则不同。,区域生长法,最简单的区域生长法是将像素聚类,为了达到这一目的,我们从一个种子像素点出发,按照某种连通方式和规则,P,来检查周围邻近的像素点,如果具有和种子像素点相似的性质,就说明它们属于同一区域,这种算法有点类似于计算机图形学中的多边形种子填充算法。,区域生长法 什么是区域 一般用以下性质来定义区域:图像,区域生长法的,程序伪码,procedure,label_region_of(I,x,y,label,intensity);,if,I(x,y)=intensity,then,I(x,y):=label;,label_region_of(I,x,y-1,label,intensity);,label_region_of(I,x,y+1,label,intensity);,label_region_of(I,x-1,y,label,intensity);,label_region_of(I,x+1,y,label,intensity);,这是一个在高层编程实现递归调用很好的方式,不过这种方法的一个主要缺点是怎样获得初始的种子像素点。,我们可以重新回到基于直方图的方法上来,为每一个区域寻找一个种子像素,找到具有图像直方图中峰值的像素点作为种子像素。,区域生长法的程序伪码 procedure label_reg,区域分割与合并,原理,将图像分割成越来越小的区域直至每个区域中的像素点具有相似的数值。,这种方法的一个优点是不再需要前面所说的种子像素,但是它有一个明显的缺点是会使分割后的区域具有不连续的边界。,if,current region homogeneous test is FALSE,then,split into four quadrants,attempt to merge these quadrants,recursively call the procedure for each subdivision,find any remaining merges,一种简单直接实现算法,区域分割与合并 原理将图像分割成越来越小的区域直至每个区域,简单的区域分割与合并算法过程,通常在一个区域中所要考虑的参数不只一个,可以采用统计测试的方式;,例如考虑一个区域中数值的均值和方差等。如果它的四个分块中的均值和方差相差不大的情况下,则可以说一个区域是单调均匀的;,同样我们可以采用这种方式合并具有相同性质的区域。,简单的区域分割与合并算法过程 通常在一个区域中所要考虑的参,Hough,变换,:在形状物中的任意一个点为参考点,:边界上任意一点,r,:,(,x,y,)到参考点的距离,:是,x,轴与边界点,(,x,y,),切线的法线之间的夹角,:参考点与点,(,x,y,),的连线与,x,轴之间的夹角,则有:,Hough变换:在形状物中的任意一个点为参考点:边界上任意,某已知特殊边界,R,,可按,的大小列成一个二维表格,,i,确定后,查表可得(,i,r,i,),,经上述两式可得到,(,x,c,y,c,)。,对已知形状建立了,R,表后,开辟一个二维存储区,对未知图像各点都来查已建立的,R,表,然后计算,(,x,c,y,c,),,若未知图像各点计算出的,(,x,c,y,c,),很集中,就表示已找到该已知形状的边界。,对将要找寻的某物边界建立一,R,表,以步进值,i,来求,i,r,i,。,在需要判断被测图像中有无已知形状物时,也可对该图某物各点在内存中建立一存储区,存储内容是累加的。把,x,c,,,y,c,从最小到最大用步进表示,并作为地址,记作记作,A,(,x,c
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!