资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,小角,X,光散射,= 1.54 d = 2.5, = 18,= 1.54 d = 5,= 9,= 1.54 d = 10, = 4.5,= 1.54 d = 20, = 2.2,(1),稀粒子体系(乳液体系与微孔体系),(2),非粒子两相体系(聚合物共混物,稠密粒子体系,海岛结构,晶区,/,无定形混合体系),(3),周期体系(层状材料,晶片迭合,共聚物规则微区,生物分子、组织,小角散射可测定的体系,O,A,s,s,S,/,S,0,/,r,S,0,/,S,0,/,6.1,预备知识,如果样品中散射点数量很大,可视为连续分布的,可表示为电子密度函数,(,r,),,,整个样品体积的振幅可用积分表示:,可以看出一个,s,确定之后,照射体积内所有粒子都通过,s,r,贡献同一个振幅,即一个振幅是由照射体积内所有粒子通过此,s,所决定。即实空间中的,电子密度函数,(,r,),转换为倒易空间中,s,的振幅函数,A (,s,),。,a,1,a,2,a,3,b,1,b,2,b,3,r,s,(,r,),A(,s,),在数学上,这种转换就是电子密度函数,(,r,),的,Fourier,变换。,电子密度函数,(,r,),为实空间中,r,的函数,而振幅,(,s,),为倒易空间中,s,的函数。,a,1,a,2,a,3,b,1,b,2,b,3,r,s,(,r,),A(,s,),Fourier,变换,一维,Fourier,变换,一维,Fourier,逆变换,应用于光散射,倒易空间又称,Fourier,空间,a,1,a,2,a,3,b,1,b,2,b,3,S,/,S,/,(,r,),A(,s,),S,0,/,有多少组衍射,倒易空间中就有多少个,s,矢量,s,总是与,2,同时出现,为简便令,散射强度等于振幅的平方,auto,correlation function,correlation function,pair correlation function,fold of,into itself,self-convolution function,pair distribution function,radial distribution function,Patterson function,(,r,),称为,(,r,),的自相关函数,英文名称:,自相关函数,(u),(r),u,r,-4 -3 -2 -1 0 1 2 3 4,1,0,1,0,-4 -3 -2 -1 0 1 2 3 4,性质,1,:,(r),的变化较,(u),平缓,自相关函数,(u),(r),u,r,-4 -3 -2 -1 0 1 2 3 4,1,0,1,0,-4 -3 -2 -1 0 1 2 3 4,性质,2,:不论,(u),是否偶函数,,(r),一定是偶函数,最大值位于,r = 0,处,自相关函数,(u),(r),u,r,-4 -3 -2 -1 0 1 2 3 4,1,0,-4 -3 -2 -1 0 1 2 3 4,性质,3,:如果,(u),为分立函数, ,(r),也是分立函数,当,r,大于分立宽度且小于间隔时,(r),值为零,自相关函数,当,r=0,时,(,r,),与,(,u,) (,u,+,r,),平均值有关:设固定,r,不变,该,公式表明强度等于自相关函数的,Fourier,变换,四者之间的关系:,Fourier,变换,Fourier,逆变换,平方,自相关,(,r),(r),A(q),I(q),Fourier,变换,Fourier,逆变换,实验数据,小角光,散射研究物质结构的一般方法,实验数据,I(q),结构参数,长度质量密度,实空间模型,其它技术验证,倒易空间模型,6.2,稀粒子体系,各个粒子的位置互不关联,总强度为各个粒子独立贡献之和,不论粒子形状如何,均可定义一回转半径:粒子内各点与质心间的均方根距离(每点按散射长度密度加权),b,为散射长度,如果散射长度均一,则上式可简化为,如:半径为,R,的球体的回转半径为,如:半轴为,a,b,c,的,椭球体的回转半径为,高分子链的回转半径为,如果粒子是分散于均匀连续介质中,则,(,r,),应换成,(,r,),,,如果背景为真空,则可应用上式,球状粒子,分部积分:,细棒状粒子,薄盘状粒子,Si,(x),为正弦积分函数:,不规则粒子的散射强度(含高分子链),Guinier,Law,:,0,为散射长度密度,,v,为粒子体积,Guinier,Law,:,以,lnI,(q),对,q,2,作图,斜率为,-,R,g,2,/3,I(q),1/R,q,lnI,tg, = -R,2,/3,q,2,适用范围,Guinier,Law,成立的条件:,q,远小于,1/,R,g,体系很稀,粒子独立散射,粒子无规取向,体系各向同性,基体,(,溶剂,),密度均匀,实际工作中条件,4,很难满足,故应将溶剂散射扣除,0,200,400,600,800,1000 1200,10,4,10,3,10,2,K,1,K,2,lgI,2,10,6,A,A,B,B,3,2,2,2,逐次切线法测微孔尺寸,K,3,C,C,在,lgI-,2,曲线,A,最大散射角处作一切线,A,,,交两轴于,K,1,,,1,2,。,以,A,的各点强度值减去,A,对应值,得新曲线,B,,,再在曲线,B,的最大散射角处作一切线,B,,,交两轴于,K,2,,,2,2,如此类推即可求得,K,i,、,i,2,。,(,弧度,),2),由,i,=,lgK,i,/,i,2,求得各切线斜率,1,、,2,、,3,。,3),利用,R,gi,=0.664(-,i,),1/2,求得各尺寸等级相应的回转半径,R,g1,、,R,g2,。,4),若微孔的形状是球形,则有,R,gi,=(3/5),1/2,r,i,。,由此求得微孔半径,r,1,、,r,2,。,5),求半径为,r,的球形微孔体积百分数,W(r),:,平均微孔尺寸:,最后求得平均孔径为,6.7nm,580 1200 47.990 31.864 41.138 0.00833 9.19,15700,811,71.93,47.762 61.658 0.06698 73.93,24800,234,137.04,90.995 117.493 0.01529 16.88,K,2,10,6,算例:低压聚乙烯的孔径分布,6.3,不变量,Invariant,a,1,a,2,a,3,b,1,b,2,b,3,S,/,S,/,(,r,),A(,s,),S,0,/,散射光强仅为,s,的函数,将全部光强积分,就是整个样品的散射能力,不变量,Q,定义为,I(s),在整个样品空间的积分,各向同性材料中,I(s),仅依赖于,s,的大小,(,s,为标量,),:,s,1,s,2,s,4,s,3,s,在各个角度均匀分布,亦即在球面上分布,球面元面积为,4,s,2,,,厚度为,ds,,,体积为,4,s,2,ds,s,Q,q (nm),-1,I,q,2,(nm,-2,),积分不变量,即不变量等于照射体积乘以均方电子密度,与具体几何形状无关,不变量的一般性质(,1,),由平均值,可得到一个偏差分布,(,r,),(,r,),(,r,),r,r,散射光的反差不取决于电子密度的绝对值,而只取决于电子密度的相对差,两相体系,设两相都是均匀体系,电子密度为,1,与,2,,体积分数分为,1,和,2,体系电子密度平均值,= ,1,-,2,1,2,1,2,1,2,1,2,不变量的一般性质(,2,),在,两相体系中(例如结晶聚合物中的晶相与无定形相),不变量与电子密度和体积分数的关系为,在共混,体系中,如果两相的化学成分已知,则,已知,由,Q,可决定两相的相对量。此法可用于测定结晶度。,如果相对量已知,可由,Q,计算。,若成分与相对量均已知,由,测,与,理,相比,即可了解相容性。,的应用,6.4,不规则两相体系,l,1,l,1,l,2,I = k,q,-4,q (nm,-1,),I,Porod,s Law:,在大角处,强度随,q,的,4,次方衰减,?,两相体系中衰减常数,k,为,k,依赖于内表面总面积与电子密度差的平方,即,欲,使用上式,,I(q),必须用绝对单位,欲使用相对单位,引入不变量,l,1,l,1,l,2,S/V,为比表面积,S,V=,l,1,A,S”,A,”,l,1,将弦看作一根管,截面积为,A,,,两端面积为,S,和,S”,,,端面倾角分别为和,”,l,1,l,1,l,2,S= A/,cos,S”= A/,cos,”,由上三式得到,体系中管段的总体积为,管段体积为,V=,l,1,A,S,V=,l,1,A,S”,A,”,l,1,管段总体积实为第一相的体积:,总端面面积则为总界面面积,cos,的平均值为,1/2,l,1,l,1,l,2,由弦长即,得到两相的体积分数,定义平均弦长,l,P,称为,Porod,长度,是又,一个表征体系分散程度的参数,Study of the porous network developed during curing of,thermoset,blends containing low molar weight saturated polyester,Polymer 46 (2005) 661669,案例:多孔网络研究,不饱和聚酯,+,苯乙烯,+,低分子量助剂,研究泡孔结构,体系内的两相为基体相,(,m),和泡孔相,(,p),体积分数:,比表面积:,特征长度:,表征孔隙率的两个参数,电镜弦长分析,TEM micrograph of a 25% LPA2 sample.,(b) Corresponding digitized image.,Size of the image: 8.9,m,14.5,m,(a),(b),弦长范围 孔隙率,(nm) (nm) (nm) %,25%,LPA131-159141450140.9,5%LPA231-116111610110.8,15%LPA227-285221200222.1,25%LPA227-655471000455.2,Porod,定律,q,min,=7,10,-4,-1,q,max,=0.09,-1,用,实际测定的有限区间代替无穷积分,25%LPA1,15%LPA1,5%LPA1,15%,PVAc,q,-4,(b),Intenalty,(cm,-1,),q(,-1,),1.E-04,1.E-03 1.E-02 1.E-01,1.E+08,1.E+07,1.E+06,1.E+05,1.E+04,1.E+03,1.E+02,1.E+01,25%LPA2,15%LPA2,5%LPA2,UPST,q,-4,(a),Intenalty,(cm,-1,),q(,-1,),1.E-04,1.E-03 1.E-02 1.E-01 1.E-00,1.E+07,1.E+06,1.E+05,1.E+04,1.E+03,1.E+02,1.E+01,1.E+00,1.E-01,Porod,区,斜率,Porod,区,极限,Porod,弦长,(,nm,-1,) (nm),25%,LPA1-4.08.2,10,-2,15(14),5%LPA2 -3.32,10,-1,-,15%LPA2 -3.99,10,-2,24(22),25%LPA2 -3.84,10,-2,47(45),d,a,d,c,d,ac,6.5,周期体系,d,ac,d,ac,d,c,d,a,利用,Fourier,逆变换构造一维相关函数,采用相对强度时一般使用归一化的相关函数,(,z),1,(,z),A,B,C,D,O,d,E,2d,z,理想周期体系的相关函数如下:称为自相关三角形,1,(,z),1.0,0.5,0.0,-0.5,0 1 2,x/d,由于各种非理想因素,实际得到的相关函数如下,1,(,z),A,B,C,D,O,d,PE,在,125,C,完成主结晶后冷却,80,70,60,50,40,30,20,10,0,0 0.2 0.4 0.6 0.8 1.0,125,C,110,105,100,95,85,75,60,31,C,q,2,/,e,2,(10,3,nm,-6,),q (nm,-1,),0 10 20 30 40 50,4,3,2,1,0,-1,inter-layer correlation peak,d,ac,z,z (nm),d,a,or d,c,(10,2,nm,-6,),PE at 31,C,c,=0.85,S/V=0.065nm,-1,利用相关函数计算体积分数,Time-resolved X-ray scattering and calorimetric studies on the crystallization behaviors of poly(ethylene,terephthalate,) (PET) and its copolymers containing,isophthalate,units,PET,共聚物的结晶行为,Polymer 44 (2003) 25092518,研究主题:,IPT,是否参与结晶?,共聚物的制备路线,PET:M,w,=36000,T,m,0,=275.4,C,5IPT: M,w,=37000,T,m,0,=266.5,C,10IPT: M,w,=36000,T,m,0,=261.9,C,5IPT:IPT4.9mol%, 10IPT:IPT9.8mol%,PET isothermal crystallization at 230,C,(b) 5IPT at 216,C,随,结晶的进行峰出现、变大,峰位向高,q,值移动,即长周期变小,时间分解的小角,X,光衍射,0.3 0.6 0.9 1.2 1.5,3200,2800,2400,2000,1600,1200,800,400,0,Intensity (a.u.),q,(nm,-1,),0.3 0.6 0.9 1.2 1.5,3200,2800,2400,2000,1600,1200,800,400,0,Intensity (a.u.),q,(nm,-1,),(a),(b),t(s),t(s),从,强度分布,I(q),经,Fourier,逆,变换得到一维相关函数,(,z)/,(,0),,,从中得到长周期,L,和一个厚度,l,1,,,l,2,=L-,l,1,PET crystallized at 210,C,L,l,1,(z)/,(,0),1,0,-1,10 30,z(nm),l,1,总是小于,l,2,同样过冷度结晶的,PET,的,l,1,总是大于共聚物,,l,2,总是小于共聚物,PET,的,熔点总是高于共聚物,表明晶片厚,发现,l,1,代表晶片厚度,d,c,,,l,2,代表无定形区厚度,d,a,推断,等温结晶过程中,,L,、,d,a,随时间下降,,d,c,基本不变,不同结晶温度的,d,c,不同,160,150,140,130,120,110,100,90,80,70,60,50,40,0 500 1000 1500 2000 2500,0 700 1400 2100,160,150,140,130,120,110,100,90,80,70,60,50,40,230,C,220C,210C,205C,200C,195C,190C,170C,220C,210C,200C,195C,190C,185C,180 C,t(s),t(s),(a)PET,(b)5IPT,d,c,(),d,a,(),L(),d,c,(),d,a,(),L(),165 180 195 210 225,d,c,(),d,a,(),60,55,50,45,40,35,PET,5IPT,10IPT,130,120,110,100,90,80,70,T,c,(,C,),d,c,尺寸在,38-58,,,相当于,4-6,个,ET,单元,而共聚物中,IPT,单元的间隔平均为,26-38,个,ET,单元,足以将,IPT,排除在晶格之外,d,c,基本不受共聚组成的影响,表明,IPT,不在晶格之中,共聚单元含量越高,,d,a,越大,表明,IPT,处于无定形区,含,5,mol%IPT,的共聚物,100,衍射应向低角区移动,0.2,如果发生共晶,a=,f,PEI,a,PEI,+,f,PET,a,PET,(1),晶格参数应按摩尔分数线性加,实验没有发现,(2),衍射峰应有加宽,WAXS,分析,18 21 24 27,Intensity (a.u.),(100),(011),(010),PET,5IPT,10IPT,(a),2,(deg),110,100,90,80,70,60,IPT Content(mol.-%),0 5 10,(b),(011),(010),(100),L,c,(,),DSC,熔点观察,括号中为结晶温度,均可发现两个熔点,低温熔点为二次结晶,高温熔点为主结晶,210 220 230 240 250 260,0,-1000,-2000,10,IPT(208),5IPT(208),PET(230),T,(,C),Heat flow (,mW,),根据熔融热求得结晶度,(完全结晶均聚物,H=117.6J/g,),结晶度与积分不变量的关系:,可由,Q,和结晶度得到电子密度差,(,c,-,a,),回想,(,z)-z,曲线的最初下降斜率外推至,z=0,,,即求得,Q,10,1,10,2,10,3,Q,(normalized),PET(208),PET(218),PET(230),5IPT(193),5IPT(206),5IPT(216),t(s),t,Q max,均聚物结晶快,共聚物慢,由,Q,值和结晶度即可求得,(,c,-,a,),,取,60,min,的,(,c,-,a,),对,结晶温度,Tc,作图,发现,(1),温度越高,,(,c,-,a,),越大,结晶越完善,(2),共聚物的,(,c,-,a,),大于均聚物,表明共聚单体处于无定形区,230,220,210,200,190,180,170,160,150,PET,5IPT,10IPT,170 180 190 200 210 220 230,(,c,- ,a,),2,(a.u.),T,c,(,C),Synthesis and crystallization behavior of poly(L-,lactide,)-b-poly(,-,caprolactone,) copolymer,Polymer 42 (2001) 7429-7441,聚乳酸嵌段聚己内酯,聚,乳酸的一个重要缺点是脆,与聚己内酯嵌段为一种改性手段,嵌段共聚物有两个,T,m,,,无规共聚物只有一个,T,m,聚己内酯熔点低,在高温下可只研究聚乳酸的结晶,PCL(,聚己内酯,),PLLA-r-PCL,PLLA-b-PCL(H),PLLA-b-PCL(L),PLLA(,聚乳酸,),50 100 150 200,Temperature(,C,),Heat flow,Endo,5mW,共聚物在两个温度的结晶行为,t,1/2,=50.8min (140,C),t,1/2,=5.2min (110,C),ln,(t/sec),ln,(,ln,(1-,),110C,140C,4 5 6 7 8 9,3,3,3,2,1,0,-1,-2,-3,-4,-5,Time(min),Heat flow(,mW,),0 50 100 150,0.1mW,140C,110C,0.5mW,Endo,偏光显微镜观察结晶过程,(a)15 (b)30 (c)60 (d)120min,140,C,4min,110,C,DSC,结晶度测定,140,C,下,2h,达到饱和结晶度,,110,C,下,只需,15,min,110C,140C,X,c,(%),Time(min),100,80,60,40,20,0,0 20 40 60 80 100 120 140,WAXS,测定结晶度,140,C,2,I(q),0 10 20 30 40 50,200,180,160,140,120,100,80,60,40,20,0,-20,35,min,55min,70min,110min,120min,110,C,3min,4min,5min,6min,20min,2,I(q),0 10 20 30 40 50,140,120,100,80,60,40,20,0,-20,长周期测定,作,Lorentz,校正的,SAXS,曲线,140,C,110,C,Q*=0.3nm,-1,长周期,d=2,/q*=21nm,可,观察到不变量,Q(,曲线下面积,),随时间增大,表明晶区与非晶区反差增大,I(q)q,2,q(nm,-1,),3min,4min,5min,6min,7min,14min,20min,25min,0.2 0.3 0.4 0.5 0.6,160,120,80,40,0,I(q)q,2,q(nm,-1,),23min,35min,51.5min,57min,70min,110min,0.2 0.3 0.4 0.5 0.6,120,80,40,0,作一维相关函数,Q,为积分不变量,d,为长周期,L,可指定为,L,c,z(nm),0 10 20 30 40 50,140,C,110C,d,L=,L,c,1,0,-1,(z),140,C,:,L,c,=,8.2nm,d=23.1nm,110,C,:,L,c,=,6.6nm,d= 21.3nm,共聚物与均聚物的对比,共聚物,Q,值高表明反差大,均聚物,140,C,:,d=21.2nm,L,c,=12.5nm,110,C,:,d=20.8nm,L,c,=12.3nm,140,C,140,C,I(q)q,2,q(nm,-1,),4min,8min,15min,20min,30min,0.2 0.3 0.4 0.5 0.6,120,100,80,60,40,20,0,I(q)q,2,q(nm,-1,),23min,35min,51.5min,57min,70min,110min,0.2 0.3 0.4 0.5 0.6,120,80,40,0,两种折叠方式:,垂直折叠:晶片加厚带动无定形区加厚,平行折叠:晶片加厚,无定形区不变,140,C,:,L,c,=,8.2nm,d=23.1nm,L,c,=12.5nm d=21.2nm,110,C,:,L,c,=,6.6nm,d= 21.3nm,L,c,=12.3nm d=20.8nm,共聚物 均聚物,L,c,加厚,1.6,nm,,,d,加厚,1.8,nm,相当,L,c,加厚,0.2,nm,,,d,加厚,0.4,nm,加倍,由此可判定共聚物中为平行折叠,均聚物中为垂直折叠,Crystallization of,hydroxybutyrate oligomers,.,Part 3. Unfolding transitions followed in real time using SAXS and WAXS,Polymer 45 (2004) 89378947,丁酸羟基酯低聚物的伸展转变,取最强的两个峰,(020),、,(110),进行分析,代表性的,WAXS,谱图,1300,1200,1100,1000,900,800,700,600,500,400,300,200,100,0,2 3 4 5 6 7 8 9 10 11 12 13 14 15,2,degree,Intensity (a.u.),(020),(021),(011),(101),(110),(111),(130),(040),衍射峰随温度的变化,熔融过程强度下降,结晶过程强度升高,120,C,折叠链熔融,伸展链在,136,C,开始生成,至,143,C,完成,此后伸展链熔融,140,120,100,80,60,40,20,0,30 40 50 60 70 80 90 100 110 120 130 140 150 160,0.6620,0.6615,0.6610,0.6605,0.6600,0.6595,0.6590,0.6585,140,120,100,80,60,40,20,0,30 40 50 60 70 80 90 100 110 120 130 140 150 160,0.6620,0.6615,0.6610,0.6605,0.6600,0.6595,0.6590,0.6585,Intensity (a.u.),Intensity (a.u.),Temperature(,C,),Temperature(,C,),b,a,d-spacing nm,d-spacing nm,(,110),Intensity,(110) d-spacing,(,020),Intensity,(020) d-spacing,熔融,熔融,衍射峰宽的变化,熔融发生前峰宽即开始下降,有序度增高,直至,130,C,。,此时晶体剩余很少,却很完善。,130-136,C,之间强度仍在下降,但峰宽开始增加,表明链伸展的启动,晶格解体。随伸展链晶体的生成,峰宽再度下降,至,143,C,,链,达到最大伸展,随晶体熔融峰宽再下降,140,120,100,80,60,40,20,0,30 40 50 60 70 80 90 100 110 120 130 140 150 160,0.080,0.075,0.070,0.065,0.060,0.055,0.050,0.045,0.040,Intensity (a.u.),Temperature(,C,),Peak width,mm,(020,),peak width,(020) intensity,熔融,不影响转变温度,但结晶峰相对面积从,28%,升到,65%,升温速率的影响,(110),140,120,100,80,60,40,20,0,110 115 120 125 130 135 140 145 150 155 160,0.6620,0.6615,0.6610,0.6605,0.6600,0.6595,0.6590,0.6585,Intensity (a.u.),Temperature(,C,),2,C/min,4,C/min,SAXS,测定晶片厚度,样品,A,:,室温结晶,初始厚度,1/2,E E,为最终厚度,E,2/3E,1/2E,4,1,5,9,10,13,14,(a),(b),(c),0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50,1 31.2,C,2 45.9 C,3 75.5 C,4 105.0 C,5 122.7 C,6 131.6 C,7 135.7 C,8 143.4 C,9 146.3 C,10 152.3 C,11 155.3 C,12 158.3 C,13 161.2 C,14 164.1 C,Lorentz,corrected Intensity, a.u.,Scattering vector 1/nm,样品,B,:,107,C,结晶,初始厚度,2/3,E,E,2/3E,1/2E,4,1,5,8,10,11,(a),(b),(c),Lorentz,corrected Intensity, a.u.,0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50,Scattering vector 1/nm,9,12,1 32.0,C,2 76.3 C,3 105. 9C,4 120.7 C,5 132.5 C,6 135.5 C,7 138.4 C,8 141.4 C,9,144.3 C,10,147.3 C,11 153.2 C,12 161.2 C,完,
展开阅读全文