资源描述
,整式的加减,第,3,章 整式的加减,3.4,第,3,课时,整式的加减,目标二,整式的化简求值七大技法,1,2,3,4,5,6,7,8,C,答 案 呈 现,温馨,提示,:,点击,进入,讲评,习题链接,9,1,【,点拨,】,去,括号时,可由内向外,按顺序先去小括号,再去中括号,最后去大括号;也可由外向内,按顺序先去大括号,再去中括号,最后去小括号,已知,xy,2,,,x,y,3,,求整式,(3,xy,10,y,),5,x,(2,xy,2,y,3,x,),的值,2,解:原式,3,xy,10,y,(5,x,2,xy,2,y,3,x,),3,xy,10,y,5,x,2,xy,2,y,3,x,(5,x,3,x,),(10,y,2,y,),(3,xy,2,xy,),8,x,8,y,xy,8(,x,y,),xy,.,把,xy,2,,,x,y,3,代入可得,,,原式,83,(,2),24,2,22.,【,点拨,】,本题,解题过程运用了一种很重要的数学思想方法,整体思想,,就是在考虑问题时,把注意力和着眼点放在问题的整体结构上,把相互联系的量作为整体来处理,先化简,再求值:,(1),已知,2(,mn,3,m,2,),m,2,5(,mn,m,2,),2,mn,,其中,m,,,n,满足,|,m,1|,(,n,2),2,0,;,3,解,:原式,2,mn,6,m,2,m,2,5,mn,5,m,2,2,mn,12,m,2,5,mn,.,由,|,m,1|,(,n,2),2,0,,得,m,1,0,,,n,2,0,,即,m,1,,,n,2.,当,m,1,,,n,2,时,,原式,12,m,2,5,mn,121,2,51(,2,),22.,(,2),a,2,b,(3,ab,2,a,2,b,),2(2,ab,2,a,2,b,),,其中,a,,,b,满足,|,a,1|,与,|,b,2|,互为相反数,解:,原式,a,2,b,3,ab,2,a,2,b,4,ab,2,2,a,2,b,ab,2,.,因为,|,a,1|,与,|,b,2|,互为相反数,,所以,|,a,1|,|,b,2|,0,,所以,a,1,0,,,b,2,0,,,即,a,1,,,b,2,.,当,a,1,,,b,2,时,,,原式,ab,2,(,1)(,2),2,4.,【,2020,无锡】,若,x,y,2,,,z,y,3,,则,x,z,的值等于,(,),A,5,B,1,C,1,D,5,C,4,已知,x,4,y,1,,,xy,5,,求,(6,xy,7,y,),9,x,(5,xy,y,7,x,),的值,解:原式,6,xy,7,y,9,x,5,xy,y,7,x,xy,8,y,2,x,xy,2(,x,4,y,),当,x,4,y,1,,,xy,5,时,,原式,xy,2(,x,4,y,),5,2,7.,5,当关于,x,的多项式,5,x,3,(2,m,1),x,2,(2,3,n,),x,1,不含二次项和一次项时,求,m,2,n,的值,6,小明做一道数学题:,“,已知两个多项式,A,,,B,,,A,,,B,x,2,3,x,2,,计算,3,A,B,.”,小明误把,“3,A,B,”,看成,“,A,3,B,”,,求得的结果为,5,x,2,2,x,3,,请求出,3,A,B,的正确结果,7,解:,A,5,x,2,2,x,3,3(,x,2,3,x,2),5,x,2,2,x,3,3,x,2,9,x,6,2,x,2,11,x,9.,3,A,B,3(2,x,2,11,x,9),x,2,3,x,2,6,x,2,33,x,27,x,2,3,x,2,7,x,2,30,x,25.,8,已知,A,2,x,2,xy,3,y,1,,,B,x,2,xy,.,(1),若,(,x,2),2,|,y,3|,0,,求,A,2,B,的值,;,解,:因为,(,x,2),2,|,y,3|,0,,,所以,x,2,0,,,y,3,0,,即,x,2,,,y,3.,A,2,B,2,x,2,xy,3,y,1,2(,x,2,xy,),2,x,2,xy,3,y,1,2,x,2,2,xy,3,xy,3,y,1.,当,x,2,,,y,3,时,,原式,3,xy,3,y,1,3(,2)3,33,1,10.,(,2),若,A,2,B,的值与,y,的值无关,求,x,的值,解:,因为,A,2,B,3,xy,3,y,1,(3,x,3),y,1,,,A,2,B,的值与,y,的值无关,,所以,3,x,3,0,,则,x,1,,,即,x,的值是,1.,已知,k,为常数,化简关于,x,的式子,(2,x,2,x,),kx,2,(,x,2,x,1),,并求出当,k,为何值时,此式子的值为定值?定值是多少?,9,解:原式,2,x,2,x,kx,2,x,2,x,1,(3,k,),x,2,1,,,当,k,3,时,原式,1.,所以当,k,3,时,此式子的值为定值,此定值为,1.,
展开阅读全文