机械故障诊断技术齿轮箱故障诊断

上传人:cel****303 文档编号:243739671 上传时间:2024-09-30 格式:PPT 页数:31 大小:2.08MB
返回 下载 相关 举报
机械故障诊断技术齿轮箱故障诊断_第1页
第1页 / 共31页
机械故障诊断技术齿轮箱故障诊断_第2页
第2页 / 共31页
机械故障诊断技术齿轮箱故障诊断_第3页
第3页 / 共31页
点击查看更多>>
资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,第八章 齿轮箱故障诊断,8.1,齿轮失效形式,齿轮的各种损伤发生概率:齿的断裂41%,齿面疲劳31%,齿面磨损10%,齿面划痕10%,其他故障如塑性变形、化学腐蚀、异物嵌入等8%。,图,8,1,齿根部的应力集中,一齿的断裂,齿轮副在啮合传递运动时,主动轮的作用力和从动轮的反作用力都通过接触点分别作用在对方轮齿上,最危险的情况是接触点某一瞬间位于轮齿的齿顶部,此时轮齿如同一个,悬臂梁,,受载后齿根处产生的弯曲应力为最大,若因突然过载或冲击过载,很容易在齿根处产生,过载荷断裂,。即使不存在冲击过载的受力工况,当轮齿重复受载后,由于应力集中现象,也易产生疲劳裂纹,并逐步扩展,致使轮齿在齿根处产生,疲劳断裂,。另外,淬火裂纹、磨削裂纹和严重磨损后齿厚过分减薄时在轮齿的任意部位都可能产生断裂。,轮齿的断裂是齿轮的最严重的故障,常因此造成设备停机。,二齿面磨损或划痕,A),粘着磨损,在低速、重载、高温、齿面粗糙度差、供油不足或油粘度太低等情况下,油膜易被破坏而发生粘着磨损。润滑油的粘度高,有利于防止粘着磨损的发生。,B),磨粒磨损与划痕,含有杂质颗粒以及在开式齿轮传动中的外来砂粒或在摩擦过程中产生的金属磨屑,都可以产生磨粒磨损与划痕。,一般齿顶、齿根问好摩擦较节圆部严重,这是因为齿轮啮合过程中节圆处为滚动接触,而齿顶、齿根为滑动接触。,C),腐蚀磨损,由于润滑油中的一些化学物质如酸、碱或水等污染物与齿面发生化学反应造成金属的腐蚀而导致齿面损伤。,D),烧伤,烧伤是由于过载、超速或不充分的润滑引起的过分摩擦所产生的局部区域过热,这种温度升高足以引起变色和过时效,会使钢的几微米厚表面层重新淬火,出现,白层,。损伤的表面容易产生疲劳裂纹。,E),齿面胶合,大功率软齿面或高速重载的齿轮传动,当润滑条件不良时易产生齿面胶合(咬焊)破坏,即一齿面上的部分材料胶合到另一齿面上而在此齿面上留下坑穴,在后续的啮合传动中,这部分胶合上的多余材料很容易造成其他齿面的擦伤沟痕,形成恶性循环。,图,8,2,齿面点蚀,三,齿面疲劳(点蚀、剥落),所谓齿面疲劳主要包括齿面点蚀与剥落。造成点蚀的,原因,,主要是由于工作表面的交变应力引起的,微观疲劳裂纹,,润滑油进入裂纹后,由于啮合过程可能先封闭入口然后挤压,微观疲劳裂纹内的润滑油在高压下使裂纹扩展,结果小块金属从齿面上脱落,留下一个小坑,形成,点蚀,。如果表面的疲劳裂纹扩展得较深、较远或一系列小坑由于坑间材料失效而连接起来,造成大面积或大块金属,脱,落,这种现象则称为,剥落,。剥落与严重点蚀只有程度上的区别而无本质上的不同。,实验表明,在,闭式齿轮传动,中,,点蚀,是最普遍的破坏形式。在,开式齿,轮传动,中,由于润滑不够充分以及进,入污物的可能性增多,,磨粒磨损,总是,先于点蚀破坏。,四,齿面塑性变形,软齿面齿轮传递载荷过大(或在大冲击载荷下)时,易产生齿面,塑性变形,。在齿面间过大的摩擦力作用下,齿面接触应力会超过材料的抗剪,强度,,齿面材料进入塑性状态,造成齿面金属的,塑性流动,,使,主动轮,节圆附近齿面形成,凹沟,,,从动轮,节圆附近齿面形成,凸棱,,,从而破坏了正确的齿形。有时可在某些类型的齿轮的从动齿面上出现“,飞边,”,严重时挤出的金属充满顶隙,引起剧烈振动,甚至发生断裂。,图,8,3,齿轮副的运动学分析,8,2,齿轮的振动机理与信号特征,齿轮传动系统是一个弹性的机械系统,由于结构和运动关系的原因,存在着运动和力的非平稳性。图,8-3,是齿轮副的运动学分析示意图。图中O,1,是主动轮的轴心,O,2,是被动轮的轴心。,假定主动轮以,1,作匀角速度运动,A、B分别为两个啮合点,则有O,1,A O,1,B,即A点的线速度V,A,大于B点的线速度V,B,。,而O,2,AO,2,B,从理论上有,2,V,B,/O,2,B,、,3,V,A,/O,2,A,,则,2,3,。,齿轮啮合的特征频率,啮合频率,从这个意义上说:齿轮传动系统的啮合振动是不可避免的。,振动的频率,就是,啮合频率,。也就是齿轮的,特征频率,,其计算公式如下:,齿轮一阶啮合频率,f,C0,(n/60)*z,啮合频率的高次谐波,f,Ci,i,f,CD,i=2、3、4、 n,其中:N齿轮轴的转速(r/min),z齿轮的齿数,然而A、B又是被动轮的啮合点,,当,齿轮副只有,一个啮合点,时,随着啮合点沿啮合线移动,被动轮的角速度存在波动;,当,有,两个啮合点,时,因为只能有一个角速度,因而在啮合的轮齿上产生弹性变形,这个弹性变形力随啮合点的位置、轮齿的刚度以及啮合的进入和脱开而变化,是一个,随时间变化的力F,C,(t),。,齿轮啮合的特征频率,边频带,由于传递的扭矩随着啮合而改变,,该扭矩,作用到转轴上,使转轴发生扭振。,由于在,转轴上存在键槽等非均布结构,,使得,轴的各向刚度不同,,因此,,刚度变动的周期与轴的周转时间一致,激发的扭振振幅也就按转轴的转,动,频,率,变动。,这个,扭振,对齿轮的啮合振动产生了调制作用,从而在齿轮啮合频率的两边产生出以轴频为间隔的,边频带,。,边频带,也是,齿轮振动的,特征频率,,啮合的异常状况反映到边频带,造成边频带的分布和形态都发生改变。可以说:边频带包含了齿轮故障的丰富信息。,此外齿轮制造时所具有的:偏心误差、周节误差、齿形误差、装配误差等都能影响齿轮的振动。所以在监测低精度齿轮的振动时,要考虑这些误差的影响。,从,故障诊断的实用,方面来,看,只要齿轮的振动异常超标,就是有故障,就需要处理或更换。所以大多数情况下,并不需要辨别是哪种误差所引起,,只需判定,能否继续使用。,一功率谱分析法,功率谱,分析可确定齿轮振动信号的频率构成和振动能量在各频率成分上的分布,是一种重要的频域分析方法。,幅值谱,也能进行类似的分析,但由于功率谱是幅值的平方关系,所以功率谱比幅值谱更能突出啮合频率及其谐波等线状谱成分而减少了随机振动信号引起的一些“毛刺”现象。,应用功率谱分析时,频率轴横坐标可采取,线性坐标,或,对数坐标,.,对数坐标,(恒百分比带宽)适合故障概括的检测和预报,对噪声的分析与人耳的响应接近;,但对于齿轮系统由于有较多的边频成分,采用,线性坐标,(恒带宽)会更有效。,8,3,齿轮的故障分析方法,图,8,4,某齿轮箱的功率谱,图84为某齿轮箱的功率谱,分别用,线性坐标和对数坐标,绘出,无疑使用,线性坐标效果要好得多,。,振幅,振幅,图,8,5,工程实际应用的频谱图,a),幅值谱,b),细化后的边频带,二边频带分析法,边频带成分包含,有丰富的齿轮故障信,息,要提取边频带信,息,在频谱分析时必,须有足够高的,频率分,辨率,。当边频带谱线,的,间隔小,于频率分辨,率时,或谱线,间隔不,均匀,,都阻碍边频带,的分析,必要时应对,感兴趣的频段进行频,率细化分析(ZOOM分,析),以准确测定边频,带间隔,见图85。,边频带出现的机理,是齿轮啮合频率f,z,的振动受到了齿轮旋转频率f,r,的调制而产生,边频带的形状和分布包含了丰富的齿面状况信息。,一般从两方面进行边频带分析,,一是,利用边频带的频率,对称性,,找出 f,z,nf,r,(n=1、2、3 )的频率关系,确定是否为一组边频带。如果是边频带,则可知道啮合频率,Z,和调制信号频率,r,。,二是,比较各次测量中边频带幅值的变化趋势。,根据边频带呈现的形式和间隔,有可能得到以下信息,:,1)当边频间隔为旋转频率,r,时,可能为齿轮偏心、齿距的缓慢的周期变化及载荷的周期波动等缺陷存在,齿轮每旋转一周,这些缺陷就重复作用一次,即这些缺陷的重复频率与该齿轮的旋转频率相一致。旋转频率,r,指示出问题齿轮所在的轴。,图,8,7,图,8,6,2)齿轮的点蚀等分布故障会在频谱上形成类似1)的边频带,但其边频阶数少而集中在啮合频率及其谐频的两侧(参见图8,-,6)。,3)齿轮的剥落、齿根裂纹及部分断齿等局部故障会产生特有的瞬态,冲击,调制,在啮合频率其及谐频两侧产生一系列边带。其特点是边带阶数多而谱线分散,由于高阶边频的互相叠加而使边频族形状各异。(参见图8,-,7)。严重的局部故障还会使旋转频率,r,及其谐波成分增高。,需要指出的是,由于边频带成分具有不稳定性,在实际工作环境中,尤其是几种故障并存时,边频族错综复杂,其变化规律难以用上述的典型情况表述,而且还存在两个轴的旋转频率,ri,(,主动轴,r,1,,被动轴,r,2,),混合情况。但边频的总体水平是随着故障的出现而上升的。,例如:,齿面磨损、点蚀等表面缺陷,在啮合中,不激发瞬时冲击,,因而边频带的,分布窄,,边频带的振幅随磨损程度的增大而增高。,断齿、裂齿、大块剥落等在啮合中,激发瞬时冲击,的缺陷,反映到边频带中就是,分布变宽,,随着这类缺陷的扩大,边频带在宽度和高度上也增大。,三倒频谱分析法,对于同时有数对齿轮啮合的齿轮箱振动频谱图,由于每对齿轮啮合时都将产生边频带,几个边频带交叉分布在一起,仅进行频率细化分析识别边频特征是不够的;由于倒频谱,处理算法,将功率谱,图,中的谐波族变换为倒频谱图中的单根谱线,其位置代表功率谱中相应谐波族(边频带)的频率间隔时间(倒频谱的横坐标表示的是时间间隔,即周期时间),因此可解决上述问题。,图8,-,8是某齿轮箱振动信号的频谱,图8,-,8a的频率范围为020kHz,频率,分辨率,为50Hz,能观察到啮合频率为4.3kHz及其二次三次谐波,但很难分辨出边频带。,图,8,8,用倒频谱分析齿轮箱振动信号中的边频带,功率谱:频率,f/k,H,z,;倒频谱:周期时间,/ms,图88b的频率范围为3.513.5kHz,,频率,分辨率,为5Hz,,能观察到很多边频带,但仍很难分辨出边频带。,图88c的频率范围进一步细化为7.59.5kHz,频率,分辨率,不变,可分辨出边频带,但还有点乱。,若进行倒频谱分析,如图88d所示,能很清楚地表明对应于两个齿轮副的旋转频率(85Hz和50Hz)的两个倒频分量(A,i,和B,i,)。,倒频谱,的另一个主要优点是对于传感器的,测点位置,或,信号传输途径不敏感,以及对于,幅值和频率调制,的,相位,关系,不敏感,。这种不敏感,反而有利于监测故障信号的有无,而不看重某测点振幅的大小(可能由于传输途径而被过分放大)。,图,8,9,齿面磨损导致幅值上升趋势,四齿轮故障信号的频域特征, 均匀性磨损、齿轮径向间隙过大、不适当的齿轮游隙以及齿轮,负荷过大等原因,将增加啮合频率,和它的谐波成分,振,幅,对边频的影,响很小。,在恒定载荷下,如果发生啮频率和它的谐波成分变化,则意味着齿的磨损、挠曲和齿面误差等原因产生了齿的分离(脱啮)现象。,齿轮磨损的特征,是,频谱上啮合频率及其谐波幅值都会上升,而高阶谐波的幅值增加较多,如图8-9所示。,不均匀的分布故障,(例如齿轮偏心、齿距周期性变化及载荷波动等)将产生,振,幅调制和频率调制,从而在啮合频率及其谐波两侧形成幅值较高的边频带,边带的间隔频率是齿轮转速频率,(f,r,),,该间隔频率是与有缺陷的齿轮相对应的。值得注意的是,对于齿轮偏心所产生的边带,一般出现的是下边带成分,即f,z,-nf,r,(n=1,2,3,),上边带出现的很少。,齿面剥落、裂纹以及齿的断裂等局部性故障,,将产生周期性冲击脉冲,啮合频率为脉冲频率所调制,在啮合频率及其谐波两侧形成一系列边带,其,特点,是边带的阶数多而分散,见图87所示。,而,点蚀等分布性故障,形成的边带,在啮合频率及其谐波两侧分布的边带阶数少而集中,见图86所示。这些边带随着故障的发展,其频谱图形也将发生变化。,齿轮故障与轴承故障的差异,:,1),齿的断裂或裂纹,故障,。,每当轮齿进入啮合时就产生一个冲击信号,这种冲击可激起齿轮系统的一阶或几阶自振频率。但是,齿轮固有频率一般都为高频(约在110kHz范围内),这种高频成分传递到齿轮箱时已被大幅度衰减,多数情况下只能在齿轮箱上测到啮合频率和调制的边频,带,。,其边频带的形状与分布与前期的正常状态相比,存在明显的变化。,2),轴承故障,。,如果,仅有齿轮啮合频率的振幅迅速升高,而边频的分布和,振,幅并无变化,则表明是轴承故障。,8,4,齿轮故障诊断案例,例,8-1,:,宣龙高速线材公司2006年9月,发现精轧22#轧机辊箱振动增大。图810是传动系统图。,9,月,14,日的频谱图,调出这一期间的在线监测与故障诊断系统的趋势图和频谱图。在,9月14日的频谱图上明显看到Z5/Z6的啮合频率谱线。见图811。,图,8,11 9,月,14,日的振动频谱图,特征频率表,特征频率表81(22#轧机 转速为1047r/min,谱图数据),齿,),,振,2,,其两侧有较宽的边频带,间隔为35.085Hz,与锥箱II轴的转频(34.603 Hz)基本一致。,诊断结论:,从图,8,11,的频谱图上可看出,,22#,辊箱,Z5/Z6,啮合频率幅值比较突出且有上升趋势,在其两侧有边频出现,边频间隔分别为,35.085 Hz,,与锥箱,II,轴的转频(,34.603 Hz,)基本一致,说明,22,锥箱,II,轴上的齿轮存在故障隐患。,从图,8,11,的时域波形中可以看出有轻微的周期性冲击信号,冲击周期为,,相应频率为,(1/0.028=35.71Hz),,正好为,22,架锥箱,II,轴的转频,(36.85 Hz),一致,这表明问题就出在,22,架锥箱,II,轴的齿轮上。,建议厂方立即对,22,架锥箱,II,轴上的齿轮,Z5(31,齿,),进行检查。,事后复核,厂方于2006年11月份对拆卸下的精轧22架进行检查,发现,辊,箱II轴上Z5(31齿)齿轮,的轮,齿,已破损,(见图8-12和图8-13),与诊断分析结论相符。,当时厂方曾进一步问过:估计是什么性质的故障,能否继续生产?因为除了初期(9月14日及以后几天)边频带较宽,后期边频带有所收窄,加上振幅并不很高。所以判定为出现较严重的斑剥。在工程上,齿轮出现点蚀、斑剥,厂方都会选择继续使用。整个10月都看着振幅缓慢上升,直到11月份,换轧钢品种,才停产,检查,。因为是斜齿轮的缘故,所以振幅没有像直齿轮那样,大,。,图,8,12,图,8,13,例,8-,2:,2006年4月,宣化钢铁公司棒材厂10#轧机齿轮箱的振动有点异常。查看在线监测故障诊断系统的4月23日的频谱图(图814)和特征频率表。,图,8,14 10#,轧机,2,输出端频域图形,特征频率表,特征频率表82,2,。边频窄,判断为齿轮点蚀。,例,8-3,:,2006年4月,宣化钢铁公司棒材厂16#轧机齿轮箱的振动出现异常。查看在线监测故障诊断系统的频谱图(图815、图816)和特征频率表83特征频率表84。,图,8,16 16#,轧机,20,细化后的频域图形,特征频率表,特征频率表83,特征频率表84,2,,基频边上出现了许多边频,为II轴轴承频率,II轴轴频14.3Hz在振动幅值0.24 m/s,2,。在齿轮啮合频率(基频和倍频)边上出现边频(II轴轴频),这意味这齿轮有隐患。,诊断小结,当齿轮啮合频率处及两边边频的振幅突现升高的情况下,有两种可能的故障:齿轮故障、轴承故障。要区别这两种故障,需看轴转频的振幅是否有升高,轴转频的振幅升高,意味着轴承故障。齿轮轴转频的振幅升高是由于轴承出现故障,轴芯空间位置不稳定所造成当轴转频的振幅先升后降,降低时意味着轴承可能已经出现解体。16#的II轴Z3/Z4齿轮可能存在严重磨损。,第8章,8-1常见的齿轮的失效形式有哪些?,8-2齿轮故障诊断方法有哪些?,8-3应用功率谱分析齿轮故障时,频率轴横坐标采取线性坐标还是对数坐标比较好?为什么?,8-4齿轮的特征频率计算公式是什么?,8-5描述调制现象和边频带产生的原因。,8-6功率谱分析在齿轮故障诊断中的作用如何?,8-7边频带分析一般从哪两方面进行?,8-8为方便故障诊断时的判别,频率哉上的故障特征归类有哪些?,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 压缩资料 > 基础医学


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!