资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,qew,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,qew,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,qew,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,qew,A Brief Introduction Of Point Cloud Registration Method,2,Point Cloud Registration Method,Point Cloud Registration With Target Control,3,4,Quaternion Method,2,1,Iterative Closest Point(ICP) Algorithm,4,Outline,Two point cloud sets of A and B,are conformations of the same points in different coordinate systems,Rigid transformation:,Objective function:,1.,Point Cloud Registration With Target Control,4,面,(,a,),Leica standard rotation plane target,(,b,),Mensi plane target,Figure 1 Different kinds of plane target,(,d,),Mensi plane target,(,c,),FARO standard plane target,5,1.,Point Cloud Registration With Target Control,6 spatial similarity transformation parameters,3 angle elements:,3 translation,elements:,Adjustment model:,Or,6,1.,Point Cloud Registration With Target Control,Rotation matrix:,7,1.,Point Cloud Registration With Target Control,The expansion of Taylors formula:,Error Equation:,8,G,1.,Point Cloud Registration With Target Control,Derivative value:,Suppose that:,9,1.,Point Cloud Registration With Target Control,Error equation matrix:,Gravity-centralize:,10,1.,Point Cloud Registration With Target Control,N pairs of corresponding points:,Order:,11,1.,Point Cloud Registration With Target Control,Error equation:,1.,Point Cloud Registration With Target Control,12,New approximate value:,Iteration:,Finally, we get the values of parameter:,2. Iterative Closest Point(ICP) Algorithm,13,Basic thought:,Firstly, from a point set, a bar curve, or a surface to find the closest point that corresponds to one point, and then uses this result to find two corresponding point sets. Finally, we find out the corresponding point set and the corresponding transformation matrix.,Basic steps:,Step1:Search for the nearest points,Step2:Solve transformation relations,Step3:Application transformation,Step4:Repeated iteration,3 Quaternion Method,What is Quaternion ?,14,Unit quaternions,Rotation matrix R,3. Quaternion Method,Definite translation vector:,15,Complete registration station:,Assume that:,Minimum objective function:,The centroid of the set of basic points :,3. Quaternion Method,16,Orthogonal covariance matrix of point set:,Antisymmetric matrix,s cyclic components:,Construct a symmetric matrix:,3. Quaternion Method,17,Translation matrix:,The unit eigenvector corresponding to the maximum eigenvalue of matrix :,Conclusions,Thank you,!,18,
展开阅读全文