滤波器原理与结构

上传人:一*** 文档编号:243347774 上传时间:2024-09-21 格式:PPT 页数:83 大小:2.54MB
返回 下载 相关 举报
滤波器原理与结构_第1页
第1页 / 共83页
滤波器原理与结构_第2页
第2页 / 共83页
滤波器原理与结构_第3页
第3页 / 共83页
点击查看更多>>
资源描述
Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Click to edit Master title style,第六章 滤波器原理与结构,滤波器的原理及分类,6.1,常用模拟滤波器的设计,6.2,数字滤波器的基本网络结构及其信号流图,6.3,内容提要,数字滤波器属于线性时不变离散时间系统的范畴。它具有稳定性好、精度高、灵活性大等突出,优点,。本章主要介绍滤波器的原理及分类、常用模拟滤波器的设计方法及数字滤波器的基本结构,第一节 滤波器的原理及分类,滤波器基本概念,一,滤波器分类,二,数字滤波器技术要求,三,一、滤波器基本概念,滤波器可以用描述线性时不变系统的输入输出关系的数学函数来表示,如图,6-1,所示,。,图,6-1,滤波器的时域输入输出关系,一、滤波器基本概念,若,x(n,),,,y(n,),的傅里叶变换存在,则输入输出的,频域,关系为:,在时域中,输入输出关系用公式表示为,二、滤波器分类,根据滤波器所处理的信号不同,:,主要分模拟滤波器和数字滤波器两种形式。,从功能上分类,:,滤波器可以分为低通、高通、带通和带阻滤波器。它们的理想幅频特性如图,6-3,所示。,图,6-3,各种理想滤波器的幅频特性,二、滤波器分类,从实现的网络结构或者从单位冲激响应分类,:,数字滤波器可以分成无限脉冲响应(,IIR,)滤波器和有限脉冲响应(,FIR,)滤波器。它们都是典型线性时不变离散系统,其系统函数分别为,(6-1),(6-2),三、数字滤波器技术要求,常用的数字滤波器一般属于选频滤波器。假设数字滤波器的传递函数 用下式表示,选频滤波器的技术要求一般由幅频特性给出,相频特性一般不作要求,但如果对输出波形有要求,则需要考虑相频特性的技术指标,例如在语音合成、波形传输、图像信号处理等应用场合。如果对输出波形有严格要求,则需要设计线性相位数字滤波器。,三、数字滤波器技术要求,图,6-4,低通滤波器的技术要求,第二节 常用模拟滤波器的设计,模拟滤波器按幅频特性可分为低通、高通、带通和带阻滤波器。设计滤波器时,总是先设计低通滤波器,再通过频带变换将低通滤波器转换成希望类型的滤波器。下面先介绍模拟低通滤波器的设计方法,然后再介绍模拟高通、带通、带阻滤波器的设计方法。,主要内容,巴特沃斯低通滤波器设计方法,一,切比雪夫滤波器的设计方法,二,模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,三,一、巴特沃斯低通滤波器设计方法,巴特沃斯低通滤波器的幅度平方函数用下式表示,(,6-8,),下降的速度与阶数,N,有关,,N,愈大,幅度下降的速度愈快,过渡带愈窄。幅频特性和,N,的关系如图,6-5,所示。,;,一、巴特沃斯低通滤波器设计方法,图,6-5,巴特沃斯幅频特性和,N,的关系,一、巴特沃斯低通滤波器设计方法,低通巴特沃斯滤波器的,设计步骤,如下,1,)据技术指标 、 、 和 ,用式(,6-18,)求出滤波器的阶数,N,。,2,)按照式(,6-14,),求出归一化极点 , 将代入式(,6-13,),得到归一化传递函数 。也可以根据阶数,N,,直接查表,6-1,,得到极点 和归一化传递函数 。,一、巴特沃斯低通滤波器设计方法,3,)将 去归一化。将 代入 ,得到实际的滤波器传递函数 。其中,3dB,截止频率 ,如果技术指标没有给出,可以按照式(,6-19,)或式(,6-20,)求出。,一、巴特沃斯低通滤波器设计方法,图,6-7,例,6-1,幅频特性曲线,二、切比雪夫滤波器的设计方法,切比雪夫滤波器的幅频特性具有等波纹特性。它有,两种,型式:幅频特性在通带内是等波纹的、在阻带内是,单调的切比雪夫,型滤波器,;幅频特性在通带内是单调的、在阻带内是等波纹的,切比雪夫,II,型滤波器,。采用何种型式切比雪夫滤波器取决于实际用途。,二、切比雪夫滤波器的设计方法,切比雪夫,I,型滤波器的设计方法。图,6-8,分别画出了阶数,N,为奇数与偶数时的切比雪夫,I,型滤波器幅频特性。其幅度平方函数用表示,(,6-21,),二、切比雪夫滤波器的设计方法,图,6-8,切比雪夫,型滤波器幅频特性,二、切比雪夫滤波器的设计方法,高阶切比雪夫多项式的递推公式为,(,6-23,),图,6-9,N,=0,,,4,,,5,切比雪夫多项式曲线,二、切比雪夫滤波器的设计方法,图,6-10,切比雪夫,型与巴特沃斯低通的,曲线,二、切比雪夫滤波器的设计方法,图,6-11,三阶切比雪夫滤波器的极点分布,二、切比雪夫滤波器的设计方法,切比雪夫,I,型滤波器的,设计步骤,如下:,(1),确定技术要求,、 、,和,是 时的衰减系数, 是 时的衰减系数,它们为,(,6-35,),(,6-36,),二、切比雪夫滤波器的设计方法,(2),求滤波器阶数,N,和参数,(3),求归一化传递函数,二、切比雪夫滤波器的设计方法,为求 ,先按照式(,6-29,)求出归一化极点 ,,i,1,,,2,,,,,N,。,(,6-41,),将极点 代入式(,6-33,)得,(4),将 去归一化,得到实际的 ,即,(,6-42,),二、切比雪夫滤波器的设计方法,例,6-2,设计低通切比雪夫滤波器,要求通带截止频率 ,通带最大衰减 ,阻带截止频率 ,阻带最小衰减 。,解:,1),滤波器的技术要求,,,,,,,二、切比雪夫滤波器的设计方法,2),求阶数,N,和,,取,N,5,3),求,二、切比雪夫滤波器的设计方法,由式(,6-41,)求出,N,5,时的极点 ,代入上式,得到,4),将 去归一化,得,二、切比雪夫滤波器的设计方法,在,MATLAB,中,可以利用函数,cheblap,设计切比雪夫,I,型低通滤波器。,Cheblap,的语法为:,z,p,k,=,cheblap(n,rp,),,其中,n,为滤波器的阶数,,rp,为通带的幅度误差。返回值分别为滤波器的零点、极点和增益。,对于例题,6-2,可以通过如下,MATLAB,程序完成。,二、切比雪夫滤波器的设计方法,stoprad,=12000;,passgain,=0-1;,stopgain,=60;,t1=sqrt(10(0-1*passgain)-1);,t2=sqrt(10(0-1*stopgain)-1);,n=ceil(acosh(t2/t1)/acosh(stoprad/passrad);,z,p,k=cheb1ap(n,passgain);,syms,ra,passrad,=3000;,hs1=,k/(i,*rad/passrad-p(1)/(i*rad/passrad-p(2)/(i*rad/passrad-p(3)/,(i*rad/passrad-p(4)/(i*rad/passrad-p(5);,hs2=10*log10(abs(hs1)2);,ezplot(hs2,-12000,12000);,grid on;,二、切比雪夫滤波器的设计方法,得到滤波器的归一化极点位置为:,-0.1665 + 1.0804i,-0.4360 + 0.6677i,-0.5389 + 0.0000i,-0.4360,0.6677i,-0.1665,1.0804i,滤波器的增益系数:,0.4095,得到的滤波器的幅频特性曲线如图,6-12,所示,满足设计指标。,二、切比雪夫滤波器的设计方法,图,6-12,例,6-2,幅频特性曲线,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,高通、带通、带阻滤波器的传递函数可以通过频率变换,分别由低通滤波器的传递函数求得,因此不论设计哪一种滤波器,都可以先将该滤波器的技术指标转换为低通滤波器的技术指标,按照该技术指标先设计低通滤波器,再通过频率变换,将低通的传递函数转换成所需类型的滤波器的传递函数。,为了防止符号混淆,先规定一些符号如下,假设低通滤波器的传递函数用,G(s,),表示, ;归一化频率用 表示, ,,p,称为归一化拉氏复变量。,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,所需类型(例如高通) 滤波器的传递函数用,H(s,),表示, ;归一化频率用 表示, ,,q,称为归一化拉氏变量,,H(q,),称为归一化传递函数。,图,6-13,低通与高通滤波器的幅度特性,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,(一)低通到高通的频率变换,设低通滤波器的 和高通滤波器 的幅度特性如图,6-13,所示。图中 、 分别称为低通的归一化通带截止频率和归一化阻带截止频率, 和分别称为高通的归一化通带下限频率和归一化阻带上限频率。下面通过 和 的对应关系,推出其频率变换。由于 和 都是频率的偶函数,可以将 右边曲线和 曲线对应起来,低通的 从 经过 和 到,0,时,高通 的则从,0,经过 和 到 ,因此 和 之间的关系为,(,6-43,),三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,上式即是低通到高通的频率变换公式,如果已知低通 ,则高通 用下式转换,(,6-44,),低通和高通的边界频率也用式(,6-43,)转换。,模拟高通滤波器的设计步骤如下,(,1,)确定高通滤波器的技术指标 通带下限频率 ,阻带上限频率 ,通带最大衰减 ,阻带最小衰减 。,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,(,2,)确定相应低通滤波器的设计指标按照式(,6-43,),将高通滤波器的边界频率转换成低通滤波器的边界频率,各项设计指标为:,1,)低通滤波器通带截止频率 ;,2,)低通滤波器阻带截止频率 ;,3,)通带最大衰减仍为 ,阻带最小衰减仍为 。,(3,)设计归一化低通滤波器,G,(,p,),。,(,4,)求模拟高通的,H,(,s,),。将,G,(,p,)按照式(,6-44,),转换成归一化高通,H,(,q,),,为去归一化,将 代入,H,(,q,),中,得,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,上式就是由归一化低通直接转换成模拟高通的转换公式。,例,6-3,设计高通滤波器, ,200Hz,, ,100Hz,,幅度特性单调下降, 处最大衰减为,3dB,,阻带最小衰减 ,15dB,。,解:,1,)高通技术要求,200Hz,, ,3dB,100Hz,, ,15dB,(,6-45,),三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,归一化频率,,,2,)低通技术要求,1,,,3dB,,,15dB,3,)设计归一化低通,G(p,),。采用巴特沃斯滤波器,故,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,4,)求模拟高通,H,(,s,),,取,N,3,式中,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,(二)低通到带通的频率变换,低通与带通滤波器的幅频特性如图,6-14,所示。图中 和 分别称为带通滤波器的通带上限频率和通带下限频率;令,B, ,称,B,为通带带宽,一般用,B,作为归一化参考频率。 和 分别称为下阻带上限频率和上阻带的下限频率。另外定义 ,称 为通带的中心频率,归一化边界频率用下式计算,,,,,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,现在将低通和带通的幅频特性对应起来,得到 和 的对应关系如表,6-2,所示。,图,6-14,带通与低通滤波器的幅频特性,表,6-2,和,的对应关系,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,由 和 的对应关系 ,得,(,6-46,),由表,6-2,知 对应 ,代入上式中,有,式(,6-46,)称为低通到带通的频率变换公式。利用该式将低通的边界频率转换成带通的边界频率。下面推导由归一化低通到带通的转换公式。由于,将式(,6-46,)代入上式,得到,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,将 代入上式,得到,为去归一化,将,q,s/B,代入上式,得到,(,6-47,),因此,(,6-48,),上式就是归一化低通直接转换成带通的计算公式。,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,模拟带通滤波器的设计步骤如下,(,1,)确定模拟带通滤波器的技术指标,带通上限频率 ,带通下限频率 ;,下阻带上限频率 ,上阻带下限频率 ;,通带中心频率 ,通带宽度 。,与以上边界频率对应的归一化边界频率如下:,, , , , 还需确定的技术指标有:通带最大衰减 ,阻带最小衰减 。,三、模拟滤波器的频率变换模拟高通、带通、带阻滤波器的设计,(,2,)确定归一化模拟低通技术要求,取 和 的绝对值较小的 ;通带的最大衰减为 ,阻带最小衰减为 。,(,3,)设计归一化模拟低通,G(p,),。,(,4,)由式(,6-51,)直接将,G(p,),转换成带阻滤波器,H(s,),。,,,,,第三节 数字滤波器的基本网络结构及其信号流图,数字滤波器设计首先就是根据给定技术指标设计出滤波器的系统函数,H(z,),或单位取样响应,h(n,),,然后再选择一定的运算结构将它转变为具体的数字系统。,数字滤波器的实现,不管它有多么复杂,它所包含的基本运算只有三种,即乘法、加法和单位延迟。数字滤波器就是这三种基本运算单元按照一定的算法步骤连接起来,而构成一定的数字网络来实现的。,信号流图是表达数字滤波器网络结构较好的一种方法。图,6-16,给出了数字滤波器中三种运算单元的信号流图。,利用这些基本运算单元,可以方便地画出差分方程对应的流图。例如表征一简单的一阶,FIR,数字滤波器的差分方程为,y(n,)=x(n)+ax(n-1),其对应的信号流图如图,6-17,所示。表征最简单的一阶,IIR,数字滤波器的差分方程为,y(n,)=x(n)+ay(n-1),其对应的信号流图如图,6-18,所示。,图,6-16,基本运算的信号流图,图,6-17,一阶,FIR,数字滤波器的信号流图,图,6-18,一阶,IIR,数字滤波器的信号流图,主要内容,IIR,数字滤波器的基本网络结构,一,FIR,数字滤波器的基本网络结构,二,一、,IIR,数字滤波器的基本网络结构,对于特定的数字滤波器,表征它的差分方程或系统函数是唯一的,但由那些基本运算构成的算法可以有很多种。,例如,可以写成,+ ,也可写成 。,一、,IIR,数字滤波器的基本网络结构,尽管它们是同一系统函数,但具体算法却不同,因此对应的网络结构也不同。不同的网络结构将有不同的运算误差、稳定性、运算速度,所以网络结构也是数字滤波器研究的重要内容之一。,IIR,数字滤波器具有下列特点,:,单位冲激响应,h(n,),具有无限时宽,即其延伸到无限长,;,系统函数,H(z,),在有限,Z,平面,(0|,Z,|0,处收敛,且有(,N,1,)阶极点在,z,0,处,有(,N,1,)个零点位于有限,z,平面的任何位置。因此,FIR,滤波器的结构主要是非递归结构,没有输出到输入的反馈。但在频率采样结构等某些结构中也包含有反馈的递归部分。,FIR,滤波器有以下几种基本结构形式。,(-),直接型,由于表征,FIR,数字滤波器的差分方程为,(,6-60,),二、,FIR,数字滤波器的基本网络结构,据此可以直接画出其对应的网络结构,它是,x(n,),延时链的横向结构,如图,6-28,所示,称之为直接型结构,也可称之为卷积型或横截型结构,也可画成图,6-29,的结构。图,6-29,和图,6-28,互为转置结构,。,图,6-28 FIR,数字滤波器的直接型结构,图,6-29 FIR,数字滤波器直接结构的转置,二、,FIR,数字滤波器的基本网络结构,(二)级联型,如将,H(z,),写成二阶因式的乘积即可得,FIR,的级联型结构。,(,6-61,),N/2,表示取整,若,N,为偶数,则,N,1,为奇数,故系数 中有一个为零,因为这时有奇数个根。与式(,6-61,)对应得网络结构表示于图,6-30,中,(,N,为奇数)图中每一个二阶因子都用直接型实现,其优点是零点便于调整,因为这种结构的每一节控制一对零点;缺点是其所需的乘法次数比卷积型多,因为系数 的个数比系数,h(n,),的个数多。,二、,FIR,数字滤波器的基本网络结构,图,6-30 FIR,数字滤波器的级联型结构,二、,FIR,数字滤波器的基本网络结构,(三)线性相位型,FIR,数字滤波器最重要的特点是可以设计成具有严格的线性相位,这时它的单位冲激响应有如下特性,偶对称,(,6-62,),奇对称,因此,当,N,为偶数时,(,6-63,),二、,FIR,数字滤波器的基本网络结构,当,N,为奇数时,(,6-64,),式(,6-63,)意味着实现直接形式网络需,N/2,次乘法,而式(,6-64,)则仅需(,N,1,),/2,次乘法,它们都不像直接型结构那样需要,N,次乘法,图,6-31a,、,b,分别为它们对应的网络。,二、,FIR,数字滤波器的基本网络结构,a),N,为偶数,b),N,为奇数,图,6-31,线性相位,FIR,数字滤波器的结构,二、,FIR,数字滤波器的基本网络结构,(四)频率采样结构,根据第四章的频域采样公式可知,一个,FIR,滤波器的传递函数,H(z,),可由,H(k,),经内插得到,即,(,6-65,),式中, 为一有限单位冲激响应,FIR,系,统; 为一无限单位冲激响应,IIR,系统。,因此,数字滤波器的整个频率采样结构如图,6-32,所示。,二、,FIR,数字滤波器的基本网络结构,图,6-32,频率采样结构,二、,FIR,数字滤波器的基本网络结构,是,FIR,型,它在,Z,平面单位圆上有,N,个等分的零点,即由 ,0,得到,k,0,,,1,,,N,-1,(,6-66,),(,6-67,),式(,6-67,)表明幅频特性,| |,具有正弦波全波整流后的形状,因此称 是由,N,个延迟单元组成的梳状滤波器,如图,6-33,所示。,二、,FIR,数字滤波器的基本网络结构,是,IIR,型,它在,Z,平面单位圆上有,N,个等分的极点,即由,图,6-33,梳状滤波器的幅频特性,得,k,0,,,1,,,,,N,1,(,6-68,),二、,FIR,数字滤波器的基本网络结构,可见, 对 处的响应是 ,所以说 是一个谐振频率为 的无耗谐振器。,表明, 的,N,个零点恰好能抵消 的,N,个极点,使整个系统变得非常稳定。且零极点的位置能直接控制,这正是频率采样型的特点。,频率采样结构的主要优点是:在频率采样点 , ,只要调整 就可以有效地调整频响特性,实际调整方便;只要,h(n,),的长度,N,相同,对于任何频响形状,其梳状滤波器部分和,N,个一阶网络部分结构完全相同,只是各支路增益 不同,这样,相同部分便于标准化、模块化。,二、,FIR,数字滤波器的基本网络结构,但它也有缺点,主要是:系统稳定是靠位于单位圆上的,N,个零极点抵消来保持的,但实际上寄存器都是有长度的,由于有限字长效应可能使零极点不能完全抵消,从而影响系统的稳定性;结构中 和 一般为复数,要求乘法器完成复数相乘,硬件实现不方便。,为克服频率采样结构的这些缺点,可对频率采样结构作进一步的修正,具体修正方法请参考有关书籍。当采样点数,N,很大时,修正后的频率采样结构十分复杂,但对于窄带滤波器而言,大部分频率采样值 为零,从而使二阶网络个数大大减少,所以频率采样结构特别适用于窄带滤波器。,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 小学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!