双向电泳技术课件

上传人:wz****p 文档编号:243152080 上传时间:2024-09-17 格式:PPT 页数:68 大小:1.38MB
返回 下载 相关 举报
双向电泳技术课件_第1页
第1页 / 共68页
双向电泳技术课件_第2页
第2页 / 共68页
双向电泳技术课件_第3页
第3页 / 共68页
点击查看更多>>
资源描述
单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,1809,年俄国物理学家,Pe,ce,首次发现电泳现象。,*,1909,年,Michaelis,首次将胶体离子在电场中的移动称为电泳。,他用不同,pH,的溶液在,U,形管中测定了转化酶和过氧化氢酶的电泳移动和等电点。,*,1937,年瑞典,Uppsala,大学的,Tiselius,对电泳仪器作了改进,创造了,Tiselius,电泳仪,建立了研究蛋白质的移动界面电泳方法,并首次证明了血清是由白蛋白及,、,、,球蛋白组成的,由于,Tiselius,在电泳技术方面作出的开拓性贡献而获得了,1948,年的诺贝尔化学奖。,*,1948,年,Wieland,和,Fischer,重新发展了以滤纸作为支持介质的电泳方法,对氨基酸的分离进行过研究。,*,从上世纪,50,年代起,特别是,1950,年,Durrum,用纸电泳进行了各种蛋白质的分离以后,开创了利用各种固体物质(如各种滤纸、醋酸纤维素薄膜、琼脂凝胶、淀粉凝胶等)作为支持介质的区带电泳方法。,*,1959,年,Raymond,和,Weintraub,利用人工合成的凝胶作为支持介质,创建了聚丙烯酰胺凝胶电泳,极大地提高了电泳技术的分辨率,开创了近代电泳的新时代。,*,由,80,年代发展起来的新的毛细管电泳技术,是化学和生化分析鉴定技术的重要新发展,己受到人们的充分重视。,*,双向电泳由,OFarrells,于,1975,年首次建立并成功地分离约,1000,个,E.coli,蛋白。,1,一、电泳的基本原理,1,、在电场作用下,带电颗粒向着与其电性相反的方向移动的现象称为电泳(,electrophoresis),。,由,F = Eq,,,f = 6,r,可得,=,Eq/(,6,r,),2,、带电颗粒的泳动速度同,电场强度,和分子本身所带的,净电荷量,成,正比,,与,颗粒半径,和,介质黏度,成,反比,。,蛋白质是一种两性电解质。其泳动速度取决于蛋白质分子所带电荷的性质、数量以及颗粒的大小和形状。,第一节 蛋白质电泳的基本原理,2,在一定,pH,条件下,每一种分子都具有特定的电荷,(,种类和数量,),、大小和形状,在一定时间内它们在相同电场中泳动速度不同,各自集中到特定的位置上而形成紧密的泳动带。这就是带电粒子可以用电泳技术进行分离、分析和鉴定的基本原理。,3,二、影响电泳速度的因素,1,、电场强度;,2,、缓冲溶液的,pH,;,3,、缓冲溶液的离子强度;,4,、电渗;,5,、焦耳热,三、电泳的分类,按原理分类:,自由界面电泳,:又称移动界面电泳,是指在没有支持介质的溶液中进行的电泳。其装置复杂,价格昂贵,费时费力,不便于推广应用。,稳态电泳,(或称置换电泳):分子颗粒的电泳迁移在一定时间达到一个稳态后,带的宽度不随时间而变化。,区带电泳,:是指有支持介质的电泳,待分离物质在支持介质上分离成若干区带。支持介质的作用主要是防止电泳过程中的对流和扩散,以使被分离的成分得到最大分辨率的分离。区带电泳由于采用的介质不同以及技术上的差异,又可分为不同的类型。,4,5,􀂾,按,支持介质种类,的不同,区带电泳可分为,纸电泳,:用滤纸作为支持介质,多用于核苷酸的定性定量分析。,醋酸纤维素薄膜电泳,:医学上,常用于分析血清蛋白、胎盘球蛋白,其优点是简便迅速,便于保存照相,比纸电泳分辨率高。,􀂙以上二种类型的电泳,由于介质的孔径度大,没有分子筛效应,主要靠被分离物的电荷多少进行分离。,6,淀粉凝胶电泳,:多用于同工酶分析,凝胶铺厚些,可一层一层剥层分析(一板多测)。天然淀粉经加工处理即可使用,但孔径度可调性差,并且由于其批号之间的质量相差很大,很难得到重复的电泳结果,加之电泳时间长,操作麻烦,分辨率低,实验室中已很少使用。,琼脂糖凝胶电泳,:一般用于核酸的分离分析。琼脂糖凝胶孔径度较大,对大部分蛋白质只有很小的分子筛效应。,聚丙烯酰胺凝胶电泳,:可用于核酸和蛋白质的分离、纯化及检测。其分辨率较高。,聚丙烯酰胺和琼脂糖是目前实验室最常用的支持介质。,7,􀂾,另外根据支持介质形状不同,区带电泳可分为:薄层电泳、板电泳、柱电泳。􀂾,根据用途不同,可分为:分析电泳、制备电泳、定量电泳、免疫电泳。,按,pH,的连续性不同,可分为:连续,pH,电泳,不连续,pH,电泳。,8,四、聚丙烯酰胺凝胶电泳,聚丙烯酰胺凝胶电泳,(,polyacrylamidegel electrophoresis,,简称,PAGE,)是以聚丙烯酰胺凝胶作为支持介质的电泳方法。,PAGE,应用广泛,可用于蛋白质、酶、核酸等生物分子的分离、定性、定量及少量的制备,还可测定分子量、等电点等。,9,1,、丙烯酰胺凝胶有以下优点:,几乎无电渗作用。,化学性能稳定,与被分离物不起化学反应。对,pH,和温度变化较稳定。,在一定浓度范围内凝胶无色透明,有弹性,机械性能好,易观察。,凝胶孔径可调。,分辨率高,尤其在不连续凝胶电泳中,集浓缩、分子筛和电荷效应为一体,因而有更高的分辨率。,10,2,、聚丙烯酰胺凝胶的聚合,11,催化剂和加速剂的种类,AP-TEMED,:化学聚合作用。,加速剂四甲基乙二胺,(TEMED),的碱基可使催化剂过硫酸铵,(,简称,AP),的水溶液产生出游离氧原子,然后激活,Acr,单体,形成单体长链,在交联剂,Bis,作用下聚合成网状的凝胶。,核黄素,-TEMED,:光聚合作用。,光聚合作用通常需痕量氧原子存在才能发生,因为核黄素在,TEMED,及光照条件下,还原成无色核黄素,后者被氧再氧化形成自由基,从而引发聚合作用。,12,13,丙烯酰胺会产生如下几个化学反应:,高浓度酸和碱会促进其水解形成丙烯酸和,NH3,。,与一些羟基化合物如酚或酯族醇反应,生成,-,芳氧基或烷氧基丙酰胺。,在,20,能,NH3,反应,生成,、,、,-,氮川三丙酰胺。,与一些硫醇反应,生成,-,烷基丙酰胺。,也会由于超声、,-,射线和自然光线引起聚合作用。如果烃键靠近在高度聚合的位置,酰胺基也会受到分子间的缩聚作用而成亚胺桥。,14,凝胶的孔径可调性及其他性质,每,100,亳升凝胶溶液中含有单体和交联剂的总克数称凝胶浓度,用,T%,表示;,T% = (a+b)/m,a,:丙烯酰胺克数;,b,:,N,N-,甲叉双丙烯酰胺克数;,m,:缓冲液体积,(,毫升,),。,3,、聚丙烯酰胺凝胶的,有效孔径,:,15,16,浓缩效应,17,聚丙烯酰胺凝胶电泳的异常现象及解决办法,1.,凝胶未聚合,2.,未加水层时凝胶聚合,3.,电泳后未能检测出样品,4.,样品分离区带宽或拖尾,5.,只显一条区带,6.,分离区带呈条纹状,18,第二节 蛋白质等电聚焦电泳,1966,年,瑞典科学家,Rible,和,Vesterberg,建立。,等电聚焦:,isoelectric focusing,IEF,。,1.,电泳系统中加进两性电解质载体,当通直流电时,两性电解质载体即形成一个由阳极到阴极连续增高的,pH,梯度。蛋白进入时,不同的蛋白移动到与其等电点相当的,pH,位置上,从而使不同等电点的蛋白得以分离。,2.,优点:分辨率高,区带清晰、窄,加样部位自由,重现性好,可测定蛋白或多肽的等电点。,3.,缺点:需无盐溶液,不适用于在等电点不溶解或发生变性的蛋白。,19,利用蛋白质分子或其他两性分子等电点的不同,在一个,稳定的、连续的、线性的(或非线性),pH,梯度,中进行蛋白质的分离和分析。分析对象只限于蛋白质和其他两性分子。,根据建立,pH,梯度原理不同,可分为,载体两性电解质,pH,梯度(,carrier ampholyte pH gradient),和,固相,pH,梯度,(immobilized pH gradient, IPG),。,20,一、基本原理,1,、蛋白质的等电点:取决于其氨基酸的组成。,组成每一种蛋白质或多肽的氨基酸的数目和比例是不同的,故蛋白质的等电点范围很宽,这使得可以利用它来分离和分析蛋白质。,21,2,、聚焦效应,3,、等电聚焦的分辨率,22,二、载体两性电解质,pH,梯度等电聚焦电泳,1,、载体两性电解质应具备的条件,在等电点处有足够的缓冲能力,以便能控制,pH,梯度,而不致被样品的缓冲能力而改变,pH,梯度。,在等电点处有足够高的电导,以便使一定的电流通过,具备不同,pH,的载体有相同的电导系数,是整个体系中的电导均匀。,分子质量小,便于与被分离的高分子物质分离。,化学组成不同于被分离物质,不干扰测定。,应不与分离物质反应或使之变性。,由多乙烯多胺与丙烯酸加成制备,(,有不同,pH,范围的商品两性电解质载体,),23,2,、载体两性电解质,pH,梯度的形成,有两种方法产生,pH,梯度:,用两种不同的,pH,的缓冲液互相扩散,在混合区形成,pH,梯度。这种方法形成的,pH,梯度很不稳定,重复性差,现已不使用。人工,pH,梯度。,利用载体两性电解质在电场作用下自然形成,pH,梯度,常用该方法。天然,pH,梯度。,24,3,、载体两性电解质分离原理,等电聚焦样品可放于任何位置。,4,、载体两性电解质的缺点,载体两性电解质合成过程复杂,影响蛋白质点的位置,从而影响了重复性;,负极漂移现象,使,pH,梯度不稳定;,负极漂移现象使碱性蛋白质无法聚焦;,凝胶灌制重复性差,凝胶机械稳定性差,影响重复性。,5,、等电聚焦中应注意的事项,pH,梯度的选择;,添加中性载体两性电解质;,电流降到最小切恒定时尽快结束,IEF;,pH,梯度测定:电泳结束后,用微电机检测凝胶表面,pH;,蛋白质在,pI,处形成沉淀。添加表面活性剂。,25,三、固相,pH,梯度等电聚焦电泳技术,固相,pH,梯度等电聚焦是,80,年代建立起来的一种等电聚焦技术。固相,pH,梯度等电聚焦比传统等电聚焦具有更高的分辨率,更大的上样量,其分辨率可达到,0.001pH,,是目前分辨率最高的电泳方法之一。,26,1,、固相,pH,梯度的介质,其所用的介质是一些具有弱酸或弱碱性质的丙烯酰胺衍生物,它们与丙烯酰胺和甲叉双丙烯酰胺有相似的聚合行为。,27,2,、固相,pH,梯度的建立,固相,pH,梯度等电聚焦技术的突破要归功于,Immobilines,试剂(,Amersham Pharmacia Biotech, APB,)的基础上开发的固相,pH,梯度(,IPG,)技术。,Immobilines,(固相试剂)是一系列性质稳定的具有弱酸弱碱性质的丙烯酰胺衍生物,与丙烯酰胺和甲叉双丙烯酰胺有类的聚合行为。每个分子都有一个单一的酸性或碱性缓冲基团与丙烯酰胺单连,其结构式为:,其中,R,代表羧基或第三氨基。分子一端的双键可以在聚合过程中共价键合镶嵌到聚丙烯酰胺介质中。所以它是固相的,即使是在电场中也不会漂移。分子另一端的,R,基团为弱酸或弱碱性的缓冲基团,利用缓冲体系滴定终点附近一段,pH,范围就可形成近似线性的分布在,pH3,10,范围的缓冲体系。,所以固相,pH,梯度与载体两性电解质,pH,梯度的区别在于前者的分子不是两性分子,在凝胶聚合时候便形成,pH,梯度,不随环境电场条件的改变而改变,后者是两性分子,在电场中迁移到自己的等电点后才形成,pH,梯度。,28,固相,pH,梯度聚丙烯酰胺凝胶基质结合缓冲基团,29,4,、固相,pH,梯度的优点和注意事项,3,、固相,pH,梯度等电聚焦原理,蛋白质分子按照自己的,pI,位置在固相,pH,梯度中迁移,知道达到自己的等电点,停止迁移。,固相,pH,梯度可窄至,pH0.1,的范围,因此分辨率极高,可达,0.001pH,;,pH,梯度稳定,不漂移;灵活性大,可随意选择,pH,梯度和斜率;重复性好;加样容量大;样品中盐的干扰小;对碱性蛋白质也能很好的分离,无边缘效应,故可用很窄的胶条(如,5mm,宽)聚焦,特别适合于双向电泳的第一相,但固相,pH,梯度灌胶技术复杂,只能使用聚丙烯酰胺凝胶,电泳时候需要高电压,电泳时间长,窄范围,pH,测定困难,只能计算。,注意事项,:温度:,20-30,;,电压:梯度上升。,30,加样方式,31,等电聚焦电泳进行过程中,等电聚焦电泳结束后,(),(),高pH,高pH,低pH,低pH,32,第三节,SDS-,聚丙烯酰胺凝胶电泳,一、常规聚丙烯酰胺凝胶电泳,1,、基本原理,:,天然状态生物大分子聚丙烯酰胺凝胶电泳(,native PAGE,),在恒定的、非解离的缓冲系统中分离蛋白质。可得到天然蛋白质的分子量。,33,连续电泳,不连续电泳,浓缩效应,凝胶层,缓冲液离子成分,pH,电位梯度,浓缩效应,电荷效应,分子筛效应,34,2,、影响凝胶聚合的因素,形成凝胶试剂的纯度,凝胶浓度,温度和氧气的影响:,23-25,3,、聚丙烯酰胺凝胶电泳的优点,35,二、,SDS-,聚丙烯酰胺凝胶电泳,1,、基本原理,聚丙烯酰胺凝胶系统中加入十二烷基硫酸钠,(sodium dodecylsulphate)SDS,,蛋白电泳迁移率取决于其分子量,而与形状及所带电荷无关。,加入,SDS,和巯基乙醇后,巯基乙醇使蛋白的二硫键还原,,SDS,使氢键、疏水键打开,并结合到,P,分子上,形成蛋白,-SDS,,带上相同密度负电荷,形状为长椭圆形,短轴一定,长轴长度正比于蛋白分子量。,分离测定:,测分子量,(,与标准蛋白比较,),鉴定样品纯度,(,条带数目,),测定样品蛋白含量:扫描定量,(,比色,),36,2,、,SDS-,聚丙烯酰胺凝胶电泳的分类,3,、,SDS-,聚丙烯酰胺凝胶电泳的影响因素,溶液中,SDS,单体的浓度,二硫键是否完全还原,缓冲系统的选择,凝胶浓度的选择,37,凝胶电泳的操作要点,1.,凝胶制备,2.,电极缓冲液,3.,样品处理及加样,4.,电泳,5.,染色与固定,6.,脱色,7.,分析,38,?,pH,值不对,=,39,第四节 双向电泳,一、基本原理,IEF-SDS-PAGE,40,非变性,2,D-PAGE,:,两向均在非变性条件下进行,这样分离的蛋白质点的等电点和表观分子量同生理条件下获得的这些蛋白的值是一样的;,非变性,/,SDS-2D-PAGE,:,第一向采用非变性,IEF,,,之后在,2%,SDS,溶液中平衡;第二向也在,SDS,存在的条件下进行。适于分析非共价键连接的蛋白蛋白间的相互作用。,非变性,/,还原,/,SDS-2D-PAGE,:,非变性条件下,IEF,聚焦,之后用,8,M,尿素,5%,-ME,2%SDS,进行平衡,再进行第二,向,SDS-PAG,电泳。此时分离的蛋白质点可进行点的切取、蛋白酶消化、,MALDI-TOF-MS,分析鉴定,提供关于断裂二硫键连接的多肽的信息。,变性,2,D-PAGE,:,样品先用,2%,SDS,5%-ME,95,变性,5,min,,,IEF,在,8,M,尿素,1%,NP-40,条件下进行,之后胶条用,2%,SDS,5%-ME,平衡,然后进行,SDS-PAGE,。,该技术适于,DNA,序列和多肽结构的分析,或分析被碳氢键连接和其它翻译后修饰所引起的多肽结构微异质性,但此方式显示的大于,100,Kd,的蛋白质点少于第三种方式,双向电泳的分类,41,二、流程,(一)样品制备,(二)第一向:等电聚焦,1,、加样,2,、运行,(三)胶条的平衡,(四)第二向:,SDS-,聚丙烯酰胺凝胶电泳,(五)胶上蛋白的检测,1,、考马斯亮蓝染色,2,、银染,3,、负染,4,、荧光染色,42,(六)双向电泳凝胶的检测,1,、目测,2,、自动化检测,3,、双向电泳的数据库,(七)双向凝胶电泳技术当前面临的挑战:,1,、低拷贝蛋白的检测受限;,2,、极酸或极碱蛋白的分离较难;,3,、分子质量极大或极小蛋白的分离较难;,4,、难溶蛋白的检测较困难;,5,、得到高质量的双向凝胶电泳需要精湛的技术,43,一维固,相,pH,梯度等电聚焦,(,IEF with IPG,):,IPG,胶的材料是,Immobilines,,,为拥有,CH2=CH-CO-NH-R,结构的,8,种丙烯酰胺衍生物系列,其中,R,包含羧基或叔氨基团,它们构成了分布在,pH310,不同值的缓冲体系。根据公布的配方计算后,将适宜的,IPG,试剂添加至混合物中用于凝胶聚合,在聚合中缓冲基团通过乙烯键共价聚合至聚丙烯酰胺骨架中而形成,pH,梯度。通过这种方式生成的,IPG,不会发生电渗透作用,因而可以进行特别稳定的,IEF,分离达到真正的平衡状态。,44,IPG,胶条的重泡胀,泡胀的实质:是让样品能完全以可溶性的形式进入,IPG,内,从而能进行接下来的,IEF,。,不同的加样方法和加样量会导致最终结果的差异:,Protean IEF cell,、,IPGphor,等集成设备的使用:,20,mmol,/L DTT,垫片的使用:,温度的选择:,45,蛋白载样量,影响,IPG,胶条对蛋白载样量的因素包括:,待分析的蛋白点的量应满足随后的质谱分析。,电泳的目的:如果只是得到一张好的图片,则无需考虑太多其它因素。,待研究蛋白的丰度:,样品的复杂度:复杂度较高的样品,为了尽可能的了解所包含的每种蛋白,需要反复实验才能完成。如果将待检样品被富集以后则更易分析。,IPG,胶条的,pH,范围:,46,IPG,胶条的蛋白质大约载样量,IPG Strip length,Analytical Load,(silver staining),Preparative Load,(,Coom,staining),7cm,10100,g /125,l,200500,ug,/125,l,11,cm,50200,g /185,l,2501000,ug,/185,l,17,cm,100300,g/300,l,13,mg/300,l,47,IPG IEF,中,pH,梯度的选择,常用方法:先宽后窄,先线性后非线性,先短后长,预试验确定。,48,预分步收集,细胞浆,细胞核,细胞膜,核糖体及其他特定细胞成份,细胞分泌成份,pH4-12,pH3-10,pH4-7,pH5-8,pH7-10,pH6-11,pH3-6,pH3-4,pH4-5,pH5-6,pH6-7,pH7-8,pH8-9,pH9-10,pH10-11,pH11-12,第一步,第二步,第三步,用窄,pH,范围阵列分离低丰度或交叉覆盖蛋白,阵列那些亚细胞定位位置的功能蛋白质,3倍,3倍,亚蛋白质组阵列策略的框架图,49,聚焦时间的优化,理论上讲,要获得最好的图谱质量和重复性所需最佳时间是,IEF,分离达到稳定态所需的时间。,聚焦时间太短,会导致水平和垂直条纹的出现。,过度聚焦虽然不会导致蛋白质向阴极漂移,但会因为活性水转运而导致过多水在,IPG,胶表面渗出(电渗)而造成蛋白图谱变性,在胶条碱性端产生水平条纹以及蛋白丢失。,最佳时间的确定需要根据不同蛋白样品、上样量、,pH,范围和胶条长度通过经验来确定。,50,IEF,的基本条件,Stemp,1,Stemp,2,Stemp,3,total,voltage,Time,Volt-Hours,Ramp,250,20,min,Linear,4000,4000,2hr,10,000,V-hr,Linear,Rapid,5 hr,14,000,V-hr,7,cm,Stemp,1,Stemp,2,Stemp,3,total,total,Stemp,1,Stemp,2,Stemp,3,11,cm,17,cm,250,250,8000,10000,10000,8000,20,min,20,min,2.5,hr,2.5,hr,20,000,V-hr,40,000,V-hr,30,000,V-hr,50,000,V-hr,5.3 hr,7 hr,Linear,Linear,Linear,Linear,Rapid,Rapid,51,两维间的平衡,一维结束后可马上进行二维电泳,也可保存在两片塑料膜间于,80,保存数月。,但在二维电泳前一定要进行胶条的平衡,以便于被分离的蛋白质与,SDS,完整结合,从而在,SDS-PAGE,时电泳能顺利进行。,建议方案是:用含,2%(,m/v)SDS,、,1%(m/v)DTT,、,6mM,尿素和,30%,甘油的,50,mM Tris,(,pH8.8,),缓冲液先平衡,15,min,,,再用,5%(,m/v),碘乙酰胺取代,DTT,后的上述缓冲液平衡,15,min,。,如果用,TBP,代替,DTT,则只需一步平衡。,52,二维,SDS-PAGE,同普通,SDS-PAGE,类似。,但一般在垂直电泳系统中无需浓缩胶,因为在,IPG,胶条中蛋白质区域已得到浓缩,可以认为非限制性,IEF,胶(低浓度丙烯酰胺胶)充当了浓缩胶。,53,聚丙烯酰胺凝胶和转印到膜上的蛋白质的检测,理想显色剂的,7,S,安全(,safety,):,灵敏(,sensitivity,):,简单(,simplicity,):,特异性(,specificity,):,快速(,speed,):,稳定(,stability,):,兼容性(,synergy,):,54,有机染料和银染,考染灵敏度为,30100,ng,,,线性范围是,20,倍;银染的线性范围是,40,倍,灵敏度是考染的,100,倍。,胶体考马斯亮蓝染色技术可实现,PAGE,的无背景染色,其极限灵敏度为,810,ng,,,但这种染液会对蛋白质进行修饰而影响质谱分析的结果。,胺基黑常用于转印至聚偏二氟乙烯(,PVDF,),和,/,或硝酸纤维素膜上的蛋白质的染色。,银染的缺点是:对某些种类的蛋白质染色效果差,对其后的蛋白质测序和质谱分析造成影响。,这两种染色技术都可减少胶内蛋白质产量。,55,负 染,能专门提高,PAGE,胶上蛋白质的回收率,但不能用于膜上染色。,结果表现为胶面着色而蛋白质点透明。,速度快(,515,min,),,蛋白质的生物活性能保持:一旦用络合剂如,EDTA,或,Tris,/,甘氨酸转移缓冲液来络合金属离子就可进行提取来转移蛋白质。,它主要适用于蛋白质显色、完整蛋白质的胶上被动提取以及质谱分析。,该技术主要包括金属盐染料、锌咪唑染料等的使用。,56,胶体扩散染料,主要用于高灵敏度检出电转印至硝酸纤维素和,PVDF,膜上的蛋白质,不用于胶内染色。,最好的胶体金染色的灵敏度与,PAGE,胶内的银染类似。,这种技术主要包括印度墨水染料、胶体金属染料等。,57,有机荧光团染料,包括共价结合和非共价结合的荧光团染料两类。后者最为常用,其典型代表是已经商品化,的,SYPRO Red,、,Orange,、,Ruby,等荧光染料。,这三种染料可对,SDS-PAGE,胶内蛋白质进行一步染色,约,3060,min,完成,灵敏度为,210,ng,。,染色后的凝胶用标准的实验室,300,nm,紫外透射仪进行照像保存,其线性范围为,3,个数量级。,这三种染料的电泳染色结果与在酵母中通过,SAGE,所获得的基因表达水平的动态范围相匹配。,在,Tris,/,甘氨酸转印缓冲液中染色后,蛋白质可被转印至膜上并进行免疫染色或,Edman,测序来鉴定蛋白质。,58,金属螯合染料,这是一类与现代蛋白质组学研究相兼容的、相对较新的蛋白质显色试剂,其设计专门与常用微量化学表征过程兼容。它们不包含戊二醛、甲醛或,Tween,-20,等,很容易和集成化蛋白质组学平台(包括自动化凝胶染色仪、图像分析工作站、机器人剪切仪器、蛋白质酶解工作站和质谱仪等)相结合。,其中,SYPRO Ruby,也是一种基于钌的金属发光染料。,59,第五节 电泳过程中出现的问题及解决办法,一、第一向等电聚焦的问题,固相,pH,梯度胶条在靠近电极附近烧焦,电压太低,达不到最高电压,电流为零或很低,脲在胶条表面结晶,60,二、第二向,SDS-,聚丙烯酰胺凝胶电泳的问题,开始时没有电流,电泳太慢,溴酚蓝前沿不规则,三、染色的问题,水平条纹,垂直条纹,点纹理,61,凝胶的图像处理分析和,典型流程,凝胶图像的扫描:,图像加工:,斑点检测和定量:,凝胶配比:,数据分析:,数据呈递和解释:,2-,DE,数据库的建立:,62,蛋白质的胶内酶切,包括感兴趣蛋白点的挖取、含蛋白质凝胶的脱色、胶内蛋白质的酶切等过程,63,质谱技术进行蛋白质鉴定的基本流程,样品制备,与,IPG,胶条水化,IPG,电泳,与上样缓冲液浸润,SDS-PAGE,转,PVDF,膜,胶内直接染色,染色,取出蛋白点,胰酶等消化,浓缩于多孔吸附柱上,MALDI-MS,肽指纹图,数据库查询,蛋白质鉴定,已知,反向,HPLC,分离,MALDI-MS,,,PSD,片段分析,示知,ESI-MS-MS,、,微测序,64,实验方法,完整蛋白质(如凝胶分离或色谱纯化蛋白质),肽,混合物,质谱测定肽质量,(,MALDI-MS,ESI-MS),选择肽段裂解,PSD-MALDI-MS,ESI-MS/MS),计算方法,蛋白质序列数据库(核酸序列翻译数据库),肽,质量检索,:,片,1.,ppt,未,解析碎片离子检索:,片,2.,ppt,酶切,质谱鉴定蛋白质的策略,65,精品课件,!,66,精品课件,!,67,体外,pmol,32,P,蛋白质标记,蛋白质分离,蛋白酶切,2D,磷酸化做图,LC-ESI-MS或MALDI-MS,LC-ESI-MS,HPLC,IMAC,磷酸化氨基酸分析,体内,32,P,细胞标记,蛋白酶切,2D,磷酸化做图,相关分析,磷酸化位点分析策略,68,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 办公文档 > 教学培训


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!