WelcometotheKernel-Class

上传人:t****d 文档编号:243017156 上传时间:2024-09-13 格式:PPT 页数:11 大小:85.50KB
返回 下载 相关 举报
WelcometotheKernel-Class_第1页
第1页 / 共11页
WelcometotheKernel-Class_第2页
第2页 / 共11页
WelcometotheKernel-Class_第3页
第3页 / 共11页
点击查看更多>>
资源描述
Click to edit Master title style,Click to edit Master text styles,Second level,Third level,Fourth level,Fifth level,*,Welcome to the Kernel-Class,My name,: Max (Welling),Book:,There will be class-notes/slides.,Homework,: reading material, some exercises,some MATLAB implementations.,I like,: an active attitude in class.,ask questions! respond to my questions.,Enjoy.,1,Primary Goal,What is the primary goal of:,- Machine Learning,- Data Mining,- Pattern Recognition,- Data Analysis,- Statistics,Automatic detection of non-coincidental structure in data.,2,Desiderata,Robust algorithms,are insensitive to outliers and wrong,model assumptions.,Stable algorithms,: generalize well to unseen data.,Computationally efficient algorithms,are necessary to handle,large datasets.,3,Supervised & Unsupervised Learning,supervised,: classification, regression,unsupervised,: clustering, dimensionality reduction, ranking,outlier detection.,primal vs. dual problems: generalized linear models vs.,kernel classification.,this is like nearest neighbor,classification.,4,Feature Spaces,non-linear mapping to F,1. high-D space,2. infinite-D countable space :,3. function space (Hilbert space),example:,5,Kernel Trick,Note: In the dual representation we used the Gram matrix,to express the solution.,Kernel Trick:,Replace :,kernel,If we use algorithms that only depend on the Gram-matrix, G,then we never have to know (compute) the actual features,This is the crucial point of kernel methods,6,Properties of a Kernel,Definition:,A finitely,positive semi-definite,function,is a,symmetric,function of its arguments for which matrices formed,by restriction on any finite subset of points is positive semi-definite.,Theorem:,A function can be written,as where is a feature map,iff k(x,y) satisfies the semi-definiteness property.,Relevance:,We can now check if k(x,y) is a proper kernel using,only properties of k(x,y) itself,i.e. without the need to know the feature map!,7,Modularity,Kernel methods consist of two modules:,1) The choice of kernel (this is non-trivial),2) The algorithm which takes kernels as input,Modularity: Any kernel can be used with any kernel-algorithm,.,some kernels:,some kernel algorithms:,- support vector machine,- Fisher discriminant analysis,- kernel regression,- kernel PCA,- kernel CCA,8,Goodies and Baddies,Goodies:,Kernel algorithms are typically constrained convex optimization,problems,solved with either spectral methods or convex optimization tools,.,Efficient algorithms do exist in most cases.,The similarity to linear methods facilitates analysis. There are strong,generalization bounds on test error.,Baddies:,You need to choose the appropriate kernel,Kernel learning is prone to over-fitting,All information must go through the kernel-bottleneck.,9,Regularization,Demo Trevor Hastie.,regularization is very important!,regularization parameters determined by out of sample.,measures (cross-validation, leave-one-out).,10,Learning Kernels,All information is tunneled through the Gram-matrix information,bottleneck.,The real art is to pick an appropriate kernel.,e.g. take the RBF kernel:,if c is very small: G=I (all data are dissimilar): over-fitting,if c is very large: G=1 (all data are very similar): under-fitting,We need to,learn,the kernel. Here is some ways to combine kernels to improve them:,k1,k2,cone,any positive,polynomial,11,
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 大学资料


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!