边坡稳定性计算方法-课件

上传人:仙*** 文档编号:241789371 上传时间:2024-07-24 格式:PPT 页数:58 大小:2.11MB
返回 下载 相关 举报
边坡稳定性计算方法-课件_第1页
第1页 / 共58页
边坡稳定性计算方法-课件_第2页
第2页 / 共58页
边坡稳定性计算方法-课件_第3页
第3页 / 共58页
点击查看更多>>
资源描述
边坡稳定性计算 概述 平面滑坡的稳定性计算 圆弧面滑坡的稳定性计算 曲折滑面滑坡的稳定性计算 楔形体滑坡的稳定性计算 球投影法分析边坡的稳定性 崩落及屈曲滑坡的计算 数值分析法简介 概率分析法简介返回_煤炭系统规定边坡稳定性分析概述 边坡岩体可能处于相对静止状态,或者处于极限平衡状态,或者处于运动状态。处于相对静止状态的边坡是稳定的;处于运动状态的边坡岩体称为滑坡体,边坡岩体的运动过程称为滑坡。事实上,边坡岩体内存在两种不同类型的力:阻止岩体向下滑动的力抗滑力;驱使岩体向下滑动的力滑动力。通过抗滑力与滑动力(或抗滑力矩与滑动力矩)的比较,就可以判断出边坡岩体所处的状态,这就是边坡稳定性分析。边坡稳定分析的任务有两类:一类是验算已有边坡的稳定性,以便决定是否采取防护措施。如果需要采取防护措施,稳定性计算的结果将作为防护设施设计的依据。另一类是设计合理的边坡参数,使得设计的边坡既安全又经济。目前,边坡稳定分析的结果通常用边坡稳定系数来表示。规范对稳定系数的大小作出了规定。露天煤矿工程设计规范边坡稳定性系数选取表1.21.310 内排土场边坡1.21.520 外排土场边坡1.01.2临时 工作帮边坡1.11.21.21.31.31.520 非工作帮边坡1.31.520 采掘场最终边坡1.520 边坡上部有重要建筑物 或边坡滑落会造成生命财产重大损失者稳定系数服务年限(a)边 坡 类 型露天煤矿工程设计规范(GB 50197-94)_其它部门规定_ 岩土工程勘察规范规定边坡的稳定系数按以下方法取值:新设计的边坡,对安全等级为一级的边坡工程,Fs值宜采用1.301.50;安全等级为二级的边坡工程,Fs值宜采用1.151.30,安全等级为三级的边坡工程,Fs值宜采用1.051.15。当边坡采用峰值抗剪强度参数设计时,Fs取大值,采用残余抗剪强度参数设计时,Fs取小值。验算已有边坡的稳定性,Fs值可采用1.101.25;当需要边坡加荷,增大坡角或开挖坡角时,应按新设计边坡取值。建筑地基基础设计规范规定:滑坡推力安全系数应根据滑坡现状及其对工程的影响等因素确定,对一级建筑物取1.25,二级建筑物取1.15,三级建筑物取1.05。边坡稳定性计算方法分类 边坡稳定性计算目前多采用二维断面进行分析,三维分析使用还较少。稳定性分析方法可分为三类:概 率 分 析法把滑体视为刚体;滑动面因剪切破坏而形成;用块体在斜坡上的平衡原理确定稳定系数。刚体极限平衡法 数 值 分 析法包括有限单元法、边界单元法、离散单元法等。根据边坡体内的应力和位移分布确定边坡的稳定性。用数理统计方法分析边坡的稳定性。平面滑坡的稳定性计算1 平面滑坡是指边坡上的岩体沿某一倾斜面的滑动。发生平面滑坡的条件是:滑面走向与边坡走向平行或近于平行(相差20左右)滑面倾角小于边坡角,且滑动面在坡面上有出露 滑面倾角大于滑动面的等效摩擦角 滑面两侧有裂面,侧向阻力可以忽略_ 平面滑坡的稳定性计算2 平面滑坡稳定性计算有以下几种情况:边坡内有确定的滑面但没有竖直张裂逢 边坡内有确定的滑面及竖直张裂逢 边坡内没有确定的滑面,滑面需经分析求得 边坡内没有确定位置的竖直张裂逢_圆弧面滑坡的稳定性计算 圆弧面滑坡通常出现在均质岩土边坡中,其稳定系数的定义是:求出Fs的关键问题是确定抗滑力矩和滑动力矩。确定抗滑力矩和滑动力矩的方法很多,这里只介绍两种常用的方法Fellenius条分法和Bishop法。_ Fellenius条分法和Bishop法在求稳定系数时都需要试算滑动面,有没有不需要试算的方法确定滑面?俄国人费先科提出的作图法可以一次求出滑动面。_动圆弧面滑坡的稳定性计算 在进行稳定性计算时,通常将滑体分为若干条块(可以用竖直界面划分,也可以用倾斜界面划分)。双折滑面任意曲面_曲折滑面滑坡的稳定性计算 边坡岩体被纵横交错的地质断裂面切割,由这些断裂面形成的滑面,往往不是平面或圆弧等规则形状的,而是具某一曲折形状。楔形体滑坡的稳定性计算1发生楔体滑坡的条件:两组结构面与边坡面斜交,结构面的组合交线倾向与边坡倾向相同、倾角小于边坡角,组合交线的边坡面上有出露。、可以用赤平极射投影获得_ 楔形体滑坡的稳定性计算2联立求解得:根据力的平衡条件:楔形体滑坡的稳定性计算3 如果结构面a、b的面积分别为Sa和Sb,内聚力和内摩擦角分别为Ca、Cb、a、b,则楔体的抗滑力为 楔体的稳定系数Fs:如果Ca=Cb=0,a=b=,则 将Na、Nb 的表达式代入可得 楔形体滑坡的稳定性计算4 如果考虑竖直张裂面、地下水以及锚固力,则楔体的稳定系数可表示为 E.Hoek等人提出了一种确定楔体稳定系数的方法E.Hoek图解法。_楔形体滑坡的E.Hoek图解法 E.Hoek法是将边坡面、坡顶面和两个结构面绘制在赤平极射投影图上,4个圆弧有5个交点,分别代表了5条线,各线之间的夹角可在图中测出。楔形体滑坡的E.Hoek图解法根据测得的角度,求出楔体的几何形状参数:楔体的稳定系数为:如果Ca=Cb=C、a=b=,又没有水的情况下:球投影法分析边坡的稳定性 用赤平极射投影定量地分析边坡的稳定性的方法称为球投影法。基本知识 摩擦锥 摩擦圆 广义摩擦锥 裂隙组的摩擦圆 平面滑坡分析 折面滑坡分析 楔体滑坡分析_崩落及屈曲滑坡的计算 崩落主要出现在坚硬岩石陡边坡中。当岩体被几组结构面切割成陡立柱状、板状、棱块状体之后,在一定条件下,会发生转动或转动兼滑动。这种岩体破坏一般速度快、能量大,统称为崩落。柱状岩体的转动常称为倾倒。站立在斜坡上的柱体不发生转动的极限平衡条件是该柱体的重力W的作用线不超过柱体的底缘即:斜面上的块体滑动和倾倒的条件可以用左图表示。同样产状的两组裂隙,由于切割出来的宽高比不同,一个边坡有崩落的危险,另一个可能是安全的。影响崩落的因素,除了裂隙密度外,还有岩柱基底的强度、坡脚断裂面上的摩擦强度、岩柱间的连接强弱以及震动效应等。崩落的规模不大,但其危害很大(由于其突然性),要注意监测和预防。屈曲变形破坏仅发生在层理或片理发育的岩体中。屈曲变形的影响因素除了岩柱的长度外,还有裂隙的发育程度、断裂面起伏程度、层间连接强弱以及震动效应等。DEM 主要用于模拟岩石块体的渐进运动过程。假定块体为一个不变形的刚体,各刚体之间采用弹簧连接,弹簧的刚度由一个假定的表面变形系数来决定。这样接触力就以块体间相互嵌入的深度为变形乘以刚度系数得出,从而描述整个刚体系统的运动。近年来DEM在岩石力学中得到了广泛的应用。DEM允许离散块体有有限的位移和旋转,并包括子块体完全脱离母体的运动,在计算过程中可以自动识别块体之间的新的接触关系。DEM能够较为准确地预测、模拟块体的运动特征,但它没有考虑应力和应变,因而使用上有很大的局限性。BEM以定义在边界上的边界积分方程为控制方程,通过对边界分元插值离散,化为代数方程组求解。边界的离散比区域的离散方便得多,可用较简单的单元准确地模拟边界形状,最终得到阶数较低的线性代数方程组。由于它利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度;由于BEM所利用的微分算子基本解能自动满足无限远处的条件,因而BEM特别便于处理无限域以及半无限域问题;BEM不适用于解决非均匀介质的问题。数值分析法简介 数值分析法包括:有限单元法(FEMFinite Element Method)、边界单元法(BEMBoundary Element Method)、离散单元法(DEMDistinct Element Method)等等,常用的软件有:ADINA、UDEC、FLAC等。FEM将连续的求解区域离散为有限个、并按一定方式相互联结在一起的单元的组合体,单元之间通过节点联接在一起。由于单元能按不同的联结方法进行组合,而且单元本身也可以有不同形状,FEM可以模拟任何形状的物体。根据模拟材料的本构关系,可求出每个节点的位移和所有单元的应力。FEM已有许多商业软件,我们要作的工作就是确定计算范围、给定边界条件,输入岩土物理力学参数,最后对计算结果进行整理分析。对于走向长度远大于高度的边坡,通常按平面问题来分析,范围和边界条件可按下图选取。有限单元法 FEM通常采用三角形和四边形单元。概率法是20世纪70年代开始被用于边坡稳定性分析的。极限平衡法、数字分析法等都是把决定边坡稳定性的各种参数(C、E、等)看成确定值,所以稳定系数也是一个确定量。事实上,某些因素具有不确定性(如裂隙的产状、岩土强度参数等),边坡的稳定性也应该是具有某种分布的随机变量,边坡破坏有一定的发生概率。概率分析法用于分析节理岩体的稳定性时,将岩体的裂隙产状要素等视为随机变量,用数理统计理论确定其分布类型,建立概率密度函数,并求出特征值。概率分析法简介 节理产状要素统计值的概率分布特点 节理倾角的概率分布 节理长度的概率分布 节理方位的概率分布 平面滑动概率分析 楔体滑动概率分析 节理的方位用节理面法线在三维空间的单位矢量来表示,或用节理的极点表示。同一组节理的方位通常服从三维正态分布。如前所述,节理的概率圆半径与离散系数K和出现概率P的关系为:节理的长度的累积频率服从负指数分布:或韦布尔分布:同一组内的节理倾角分布服从正态分布,其概率密度函数为:平面滑动概率分析 平面滑动时边坡的破坏概率PF 可以看成两个独立事件概率(破坏面的存在概率PE 和沿这些面产生的滑动概率PS)的复合概率:滑面的存在破坏主要取决于结构面的几何条件,即倾角及长度。只有那些倾角不陡于边坡角,且其长度足够使得在该倾角下由坡脚(或坡面)出露到坡顶的结构面,才能构成可能的平面滑面。平面滑面存在概率也就是滑面的几何概率,它也是两个独立事件概率(倾角概率PD 和长度概率PL)的复合概率:。PDi 和PLi 都可以由相应的概率分布曲线下的面积求得。PE 的计算过程:确定滑面的倾角范围建立频率分布图计算PDi 和PLi 用PEi=PDi PLi 计算PE 根据已知的坡高和坡角计算某一倾角下(如第1组的31、第2组的33等等)构成滑面的最小长度(如L1、L2等),再根据长度累积概率曲线计算大于等于最小长度的概率(PL1,PL2等)。如 PL2=exp(-BL2C)平面滑动概率分析 平面滑面存在概率也就是滑面的几何概率,它也是两个独立事件概率(倾角概率PD 和长度概率PL)的复合概率:。PDi 和PLi 都可以由相应的概率分布曲线下的面积求得。PE 的计算过程:PS 的计算过程:根据C,的分布用Monte Carlo法求一定数量(通常需要400500组)的抽样值,并用公式 计算稳定系数,fi 0、Ni 0 滑体平衡时条块分界面上不发生剪切破坏,即滑体平衡时条块分界面上不发生剪切破坏,即 TiC+Eitan滑体两端无外载荷时,应满足滑体两端无外载荷时,应满足 E0EnT0Tn0 任意曲面滑坡对于整个滑体来说,一共有 6n2 个未知量,其中:Ei、Ti及Ei的作用点,共3(n-1)个;Ni、Si及Ni的作用点,共3n个;稳定系数Fs,1个。可列出的方程只有 4n 个,包括:各条块的静力平衡方程 3n个;各条块满足的Mohr-Coulumb准则 n个;只能通过假设的方法来减少未知量的个数才能求解。不同的假设就得到了不同的计算方法Bishop法、传递系数法、Sarma法等。_没有内部弱面的双折滑面滑坡边坡未破坏之前:滑体的平衡条件为:三个未知数(N1、N2和Fs),只有两个方程,如何求解?_ 当当Fs变化时,变化时,N1、N2随之变化,当随之变化,当Fs增大到某增大到某个值时,个值时,N1变为变为0,此时可求出,此时可求出Fs的上限值。的上限值。令令N1=0,可得,可得 式中:式中:有内部弱面的双折滑面滑坡 滑体内的弱面将滑体分为两个块体,块体较大、底滑面倾角较大的块体滑动的可能性较大,称为主滑块。设滑体的稳定系数为Fs,则沿底滑面ab有:根据沿底滑面ab的平衡条件:Q是主滑块保持平衡所需的力,在Q和W2的作用下,次滑块有:联合两条块的平衡方程,可得联合两条块的平衡方程,可得 上式两端都有上式两端都有Fs,需要用迭代法求解。,需要用迭代法求解。Bishop法的假设 假设每一条块上的力为平面汇交力系,这一假设可减少2n-1个未知数(n个Ni的作用点位置和n-1个Ei的作用点位置)。注意,此时只能列出3n个方程(X0、Y0、底滑面上的Mohr-Coulumb准则各n个),还需有n-1个条件。假设n-1组(Ti-Ti-1)的值后进行求解精确Bishop法;假设n-1组(Ti-Ti-1)=0的值后进行求解简化Bishop法;_图解法传递系数法 同样假设每一条块上的力为平面汇交力系,再假设分界面上T与E的关系Ti=Eitani(有n-1个)传递系数法;将Ti与Ei合成为一个力Di,显然Di平行于第i条块的底滑面;建立一个局部座标OXY,X 轴平行于第i 条块的底滑面。再根据极限平衡条件Di 是第是第i 条块稳定系数为条块稳定系数为Fs 时的剩余下滑力时的剩余下滑力Di-1 是第是第i-1 条块稳定系数为条块稳定系数为Fs 时的剩余下滑力时的剩余下滑力Fs 的计算过程:的计算过程:先假设一个先假设一个Fs值,由上往下逐块计算值,由上往下逐块计算Di(i=1,2,n),并注意到并注意到D0Dn0的边界条件。的边界条件。如果如果Dn0,说明假设的,说明假设的Fs偏大;如果偏大;如果Dn0,说明假设的,说明假设的Fs偏小;如果偏小;如果Dn=0,说明假设,说明假设的的Fs就是要求的值。就是要求的值。一般假设三个不同的一般假设三个不同的Fs值,得到三个,作成图值,得到三个,作成图 _Sarma法 Sarma法是上世纪70年代由美国学者Sarma提出来的,它首先被用于坝体稳定性的计算。水坝在地震力的作用下,滑面通常为非圆曲面,在计算的时候,引入一个水平地震加速度系数Kc(即震动系数)。Sarma法的特点_SarmaSarma法各块体的分界面可以不是竖直的;法各块体的分界面可以不是竖直的;SarmaSarma法适用于任意形状滑面的滑坡稳定性分析。法适用于任意形状滑面的滑坡稳定性分析。Sarma法 Sarma计算法可以分为以下几步:块体的几何计算 已知力的计算 临界加速度的计算 稳定系数Fs的计算 计算结果检验_块体的几何计算已知力的计算底滑面上水的浮托力分界面上的静水压力临界加速度的计算 在滑体处于极限平衡的情况下取X=0 有取Y=0 有根据Mohr-Coulomb准则,在底滑面上 有在分界面上 有联立上述四个式子得:_临界加速度的计算是一个递推式,可展开为例如n=3时,当坡面上没有外力时,应有En1E10,由此可得:稳定系数Fs的计算 用上式计算出的Kc如果正好等于震动系数Ka,则边坡处于极限平衡状态,即Fs1;如果KcKa,则边坡处于滑动状态,即Fs Ka,则边坡处于稳定状态,即Fs 1。先假设Fs1,求出一个Kc,然后再假设几个Fs值,分别令 求出相应的几个Kc,绘制成KcFs曲线,Kc=Ka对应的Fs即为所求稳定系数。计算结果检验 根据与稳定系数Fs 对应的K 值,从第一块开始依次求得:作用在底滑面及分界面上的有效法向应力为:Ei、Ni、i、i、i+1都必需大于0,即不能是拉力或拉应力,这是力的检验;除此之外还要进行力矩平衡检验。_力矩平衡检验 取块体 对其左下角点的力矩平衡:其中(XGi,YGi)为第i块体的重心坐标。从第1条块开始,z1=0,假定一个li值,可根据上述平衡方程计算出zi+1(或假定zi+1,计算出li)。可以接受的zi、li都应该在块体的边界上,最好是在边界的中间的三分之一部分。基本知识摩擦锥 将一滑块置于倾角为p的斜面上,滑块重W的切向分力S=Wsinp驱使滑块下滑。重力W的法向分力N产生摩擦力Rf,Rf=Wcosptan。当S Rf,也就是p 时,滑块便滑动。若斜面与滑块的摩擦系数各向均等时,以斜面法线为轴、摩擦角为半顶角画一圆锥,当W落入锥内,则滑块稳定;若W落在锥外,则滑块滑动;若W落在锥面上,则滑块处于极限平衡状态。这个以斜面法线为轴、摩擦角为半顶角锥体称为摩擦锥。有外力时,根据合力是否在摩擦锥内来判断滑块的稳定性。基本知识摩擦圆 将斜面和摩擦锥平移至投影球内,使锥顶位于球心,可得到摩擦锥和斜面的球投影,再将它们转化成赤平极射投影,摩擦锥的赤平极射投影称为摩擦圆。摩擦圆的绘制方法:根据斜面的产状找出其极点,固定中心,不断地转动图纸,使极点位于不同的经纬线的交点上,并从极点的四周找出角距为摩擦角的点,光滑连接这些点就得到摩擦圆。基本知识广义摩擦锥 当滑面上既有摩擦力又有粘聚力时,将粘聚力转换成等效的摩擦力,可以得到等效摩擦锥和等效摩擦圆。等效摩擦锥的半顶角a 要比摩擦锥的半顶角 大。基本知识裂隙组的摩擦圆 当滑面是一组裂隙面时,由于方位的离散性,不能以某一裂隙的摩擦圆来代替整组裂隙的摩擦圆。比如用平均方位为中心作摩擦圆,则该摩擦圆对约一半的裂隙不安全。对所有裂隙都安全的摩擦圆应该是所有裂隙摩擦圆的公共部分,这个公共部分就是裂隙组的摩擦圆(小于单个摩擦圆)。显然只要确定了出现概率P,裂隙组的摩擦圆半径就可以确定,而P是按安全概率Ps的要求确定的。通过分析出现概率与安全概率之间的关系可得:P2Ps-1Ps 与 P 之间的关系 要求安全概率越高,需要调查统计的裂隙数就越多,裂隙组的概率圆就越大(极点出现的概率就越大)。所以安全概率与出现概率成线性关系。以平均方位表示裂隙组时,有一半的裂隙是安全的、一半是不安全的,即安全概率Ps0.5,而裂隙方位正好等于平均方位的概率是0,所以 Ps0.5 P0。当安全概率Ps1.0 时,要求所有极点都落入概率圆内,即出现概率 P1,所以 Ps1.0 P1。于是可得安全概率Ps与出现概率 P之间的关系:P2Ps-1球投影法分析平面滑坡 设一边坡,结构面产状为240/50,并出露在坡面上,滑体重W40000kN。滑面面积200m2,摩擦角a30,滑面方位的离散系数K120,分析边坡的稳定性。C0时,求稳定系数。滑面的极点为 ,以 为中心画摩擦圆,点出重力矢量 ,由于 落在摩擦圆之外,故边坡不稳定,其稳定系数 Fs 为:如果用锚杆加固边坡,使Fs=1.0及1.7,问各需多少锚固力?为使 Fs=1.0,加锚固力B1.0,使合力刚好落在a=30 的摩擦圆上,B1.0的大小与锚固方向有关,其最小值是垂直于摩擦锥锥面。如果给定安全概率Ps=99,问需多大锚固力?由安全概率Ps求出相应的出现概率P:P=2Ps-1.0=0.98,概率圆半径(P)为:就是说98%的极点落在以平均方位为中心的 15 概率圆内,缩小后的摩擦圆半径为(0.98)=30-15=15。球投影法分析平面滑坡 由力多边形可求出B1.0=14000kN。由于B1.0的投影落在上半球,所以下半球投影网上记为-B1.0 为使 Fs=1.7,摩擦圆应该缩小,缩小后的摩擦圆半径为p=arctan()=18.5。此时所需施加的锚固力B1.7,B1.7的大小应使其与W 的合力正好落在18.5的摩擦锥上。同样通过力多边形可求出B1.7=21000kN。由于B1.7的投影落在上半球,所以下半球投影网上记为-B1.7 作力多边形可求出B(0.99)=23000kN。同样由于B(0.99)的投影落在上半球,下半球投影网上记为-B(0.99)如果不用锚杆加固,使Fs提高到1.0和1.7,或将Ps提高到99%时,问单位面积上各需多大的粘聚力?球投影法分析平面滑坡 作力多边形,可分别求出:C1.0=16 MN,C1.7=22MN,C99=22 MN。相应的粘聚力分别为:80 kPa、110 kPa和120 kPa。如果Fs=1.7,问导致滑坡的浮力和水平震动力最少是多大?作力多边形,可分别求出:U=10 MN,K0W=4.4MN(相当于震动系数为0.11)。球投影法分析折面滑坡 有一双折面滑体,滑体内有一结构面,结构面之上的滑体滑动趋势较大,称为主动体,结构面之下的滑体称为被动体。主动体被动体 稳定性分析的原理与传递系数法相同。分析主动体的平衡条件可求出Fp,再分析被动体的受力情况就可确定滑体的稳定性。滑体沿1面滑动,作1面和3面的极点 和 ,作重力W1的投影 ,由于 落在摩擦圆之外,所以主动体不稳定。要使主动体稳定,需要平衡力 Fp 与W1 的合力 R1刚好落在摩擦圆上,与之间的角距为,的方向已知,用力多边形可求出Fp的值。被动滑体沿2面滑动,作2面和3面的极点 和 ,作重力W2的投影 ,由于 落在摩擦圆之内,所以被动体本身是稳定的。但受主动体传递来的力 Fp 的作用,如果其合力 R2 落在摩擦圆上,则滑体处于极限平衡状态;合力R2 落在摩擦圆内,则滑体稳定;合力R2 落在摩擦圆外,则滑体不稳定。实例折面滑坡分析实例 从已知Fp的求它与W2的合力,从图上可以得出W2与R2之间的夹角为28。将R2投影到图上可知 落在摩擦圆之外,故岩体不稳定。已知W1=100MN,W2=50MN。外法线 =35向下;=80向下,=5向上,它们的方位角均为50。摩擦角分别是30、30 和15。确定两块岩体的稳定性。先画主动体的投影图,从图上可量出R1与W1的夹角为25,由已知Fp的方向作力多边形,得出Fp=42423kN。球投影法分析楔体滑坡 如果所讨论的楔体只有一个自由面,如何确定其稳定性?现以实例说明。球投影法分析楔体滑坡
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!