第1讲-射频微波工程介绍课件

上传人:痛*** 文档编号:241626966 上传时间:2024-07-11 格式:PPTX 页数:53 大小:7.16MB
返回 下载 相关 举报
第1讲-射频微波工程介绍课件_第1页
第1页 / 共53页
第1讲-射频微波工程介绍课件_第2页
第2页 / 共53页
第1讲-射频微波工程介绍课件_第3页
第3页 / 共53页
点击查看更多>>
资源描述
1第1章 射频/微波工程介绍 1.1 常用无线电频段1.2 射频/微波问题的分析方法1.3 射频/微波的基本特性1.4 射频/微波工程中的核心问题1.5 射频/微波电路的应用1.6 射频/微波电路的分类1.7 射频/微波电路的发展2图 1-1 无线电技术的发展历史1.1 常用无线电频段射频/微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和大1000倍以上。一般情况下,射频/微波频段又可划分为米波(波长101 m)、分米波(波长101 dm)、厘米波(波长101 cm)和毫米波(波长101 mm)四个波段。其后是亚毫米波、远红外线、红外线、可见光。34以上这些波段的划分并不是惟一的,还有其他许多不同的划分方法,它们分别由不同的学术组织和政府机构提出,甚至还在相同的名称代号下有不同的范围,因此波段代号只是大致的频谱范围。其次,以上这些波段的分界也并不严格,工作于分界线两边临近频率的系统并没有质和量上的跃变,这些划分完全是人为的,仅是一种助记符号。5表1-2 各无线电频段的基本用途 6 对不同频段无线电信号的使用不能随意确定。也就是说,频谱作为一种资源,各国各级政府都有相应的机构对无线电设备的工作频率和发射功率进行严格管理。国际范围内更有详细的频谱用途规定,即CCIR建议文件,在这个文件中,规定了雷达、通信、导航、工业应用等军用或民用无线电设备所允许的工作频段。表1-2是各无线电频段的基本用途。各个用途在相应频段内只占有很小的一段频谱或点频工作 和平年代,在某个地区,要避免用途不同的无线电设备使用相同的频率。相反地,在电子对抗或电子战系统中,就是要设法掌握敌方所使用的无线电频率,给对方实施毁灭性打击。7一般地,射频/微波技术所涉及的无线电频谱是表 1-1 中甚高频(VHF)到毫米波段或者P波段到毫米波段很宽范围内的无线电信号的发射与接收设备的工作频率。具体地,这些技术包括信号的产生、调制、功率放大、辐射、接收、低噪声放大、混频、解调、检测、滤波、衰减、移相、开关等各个模块单元的设计和生产。8 它的基本理论是经典的电磁场理论。研究电磁波沿传输线的传播特性有两种分析方法。一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用基尔霍夫定律建立传输线方程,求得传输线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。对于射频/微波工程中的大量问题,采用网络方法和分布参数概念可以得到满意的工程结果,而不是拘泥于严谨的麦克斯韦方程组及其数值解法。1.2 射频/微波问题的分析方法在射频/微波频率范围内,模块的几何尺寸与信号的工作波长可以比拟,分布参数概念始终贯穿于工程技术的各个方面。而且,同一功能的模块,在不同的工作频段的结构和实现方式大不相同。“结构就是电路”是射频/微波电路的显著特征。射频/微波电路的设计目标就是处理好材料、结构与电路功能的关系。9101 似光性射频/微波能像光线一样在空气或其他媒体中沿直线以光光速速传传播播,在不同的媒体界面上存在入入射射和和反反射射现象。这是因为射频/微波的波长很短,比地球上的一般物体(如舰船、飞机、火箭、导弹、汽车、房屋等)的几何尺寸小的多或在同一个数量级。因此,可以制成尺寸、体积合适的天线,用来传输信息,实现通信;可接收物体所引起的回波或其他物体发射的微弱信号,用来确定物体的方向、距离和特征,实现雷达探测。1.3 射频/微波的基本特性112.穿透性 射频/微波照射某些物体时,能够深入物体的内部。微波(特别是厘米波段)信号能穿穿透透电电离离层层,成为人们探测外层空间的宇宙窗口;能够穿穿透透云云雾雾、植植被被、积积雪雪和和地地表表层层,具有全天候的工作能力,是遥感技术的重要手段;能够穿透生物组织穿透生物组织,是医学透热疗法的重要方法;能穿穿透透等等离离子子体体,是等离子体诊断、研究的重要手段。123.非电离性一般情况下,射频/微波的量子能量还不够大,不足以改变物质分子的内部结构或破坏物质分子的键结构。由物理学可知,在外加电磁场周期力的作用下,物质内分子、原子和原子核会产生多种共振现象,其中,许多共振频率就处于射频/微波频段。这就为研究物质内部结构提供了强有力的实验手段,从而形成了一门独立的分支学科微波波谱学微波波谱学。从另一方面考虑,利用物质的射频/微波共振特性,可以用某些特定的物质研研制制射射频频/微微波波元元器器件件,完成许多射频/微波系统的建立。134.信息性射频/微波频带比普通的中波、短波和超短波的频带要宽几千倍以上,这就意味着射频/微波可以携带的信息量要比普通无线电波可能携携带带的的信信息息量量大大的多。因此,现代生活中的移动通信、多路通信、图像传输、卫星通信等设备全都使用射频/微波作为传送手段。射频/微波信号还可提供相相位位信信息息、极极化化信信息息、多多普普勒勒频频移移信信息息等。这些特性可以被广泛应用于目标探测、目标特征分析、遥测遥控、遥感等领域。14图 1-2 频率、阻抗和功率的铁三角关系信号产生频率变换频率选择1.4 射频/微波工程中的核心问题15(1)无线通信系统:空间通信,远距离通信,无线对讲,蜂窝移动,个人通信系统,无线局域网,卫星通信,航空通信,航海通信,机车通信,业余无线电等。(2)导航系统:微波着陆系统(MLS),GPS,无线信标,防撞系统,航空、航海自动驾驶等。(3)遥感:地球监测,污染监测,森林、农田、鱼汛监测,矿藏、沙漠、海洋、水资源监测,风、雪、冰、凌监测,城市发展和规划等。1.5 射频/微波电路的应用16(4)射频识别:保安,防盗,入口控制,产品检查,身份识别,自动验票等。(5)广播系统:调幅(AM),调频(FM)广播,电视(TV)等。(6)汽车和高速公路:自动避让,路面告警,障碍监测,路车通信,交通管理,速度测量,智能高速路等。(7)传感器:潮湿度传感器,温度传感器,长度传感器,探地传感器,机器人传感器等。17 (8)电子战系统:间谍卫星,辐射信号监测,行军与阻击等。(9)医学应用:磁共振成像,微波成像,微波理疗,加热催化,病房监管等。(10)空间研究:射电望远镜,外层空间探测等。(11)无线输电:空对空,地对空,空对地,地对地输送电能等。18微波设备系统微波电路无源电路有源电路微波传输线微波元件与网络波导同轴线带状线微带线一端口二端口三端口四端口微波振荡器微波放大器微波混频器上变频与倍频微波控制电路微波半导体器件天线外围结构肖特基二极管变容二极管阶跃二极管双极晶体管场效应管PIN管微波电真空器件与电源1.6 射频/微波电路分类在微波集成电路技术研究中,设计师开始注意电路的背面在微波集成电路技术研究中,设计师开始注意电路的背面金属介质接地板的金属介质接地板的开发和利用开发和利用 1987年,提出了具有周期性结构的光子带隙结构(PBG),也称光子晶体;1999年光子晶体(在物理学领域)被美国科学杂志评为当年10大科技成果;1999年,在光子带隙结构(PBG)基础上提出了缺陷接地结构(DGS)。19蝴蝶翅膀、海老鼠的毛天然光子晶体1.7 射频/微波电路的发展EBG结构在微波电路中的应用结构在微波电路中的应用 之所以称为电磁带隙结构,也正反映了它的根本特性:对某个频段的电磁波能产生抑制作用,它的优越性在于不用增加电路的尺寸,只通过改变介质的结构或分布就可以实现带隙特性,节省空间,应用灵活,甚至可以实现一般微波结构不能达到的功能。电磁带隙结构可以采用金属、介质、铁磁或铁电物质植入基质材料,或者直接由各种材料周期性排列而成。电磁带隙具有慢波特性,可以用来制作小型化器件和电路。20早期的EBG结构通常采用在介质基片打孔的方式制作仅在微带电路的接地平面上光刻出周期性阵列小孔,也可以实现带隙特性21一种新型EBG结构22基于EBG的低通滤波器设计图基于普通微带线的低通滤波器设计图23每个EBG结构的阻带带隙所在频段不尽相同,分布在频段2.4GHz到20GHz中(1)在通带范围内,最大波纹衰减两者差别不大;(2)在中心频率2.4GHz处的衰减两者差别也不大;(3)利用EBG结构设计的过渡带比利用普通微带线方法设计要长一点;(4)对于阻带,利用EBG结构占有很大的优势,从3.56GHz到20GHz内,基本能使衰减都在20dB以上;(5)对于尺寸大小,利用EBG结构设计的低通滤波器总长为40mm,而利用普通微带线设计的低通滤波器总长为48.72mm(不包括始端和末端特性阻抗为50的微带线的长度)。EBG结构仿真结果普通微带线结构仿真结果242.4GHz功分器版图25设计出一个EBG结构单元,使其在2.4GHz频率处的特性阻抗为70.7,相移为90度5.8GHz功分器版图26设计出一个EBG结构单元,使其在5.8GHz频率处的特性阻抗为70.7,相移为90度缺陷接地缺陷接地结构(结构(DGS)在)在微波集成电路中的微波集成电路中的应用应用 1999 年,提出了哑铃形的非周期 PBG 结构,后来人们认为它就是 DGS 概念的来源,哑铃结构具有简单的单极点的带阻特性。DGS 结构与 PBG 结构相比,在接地板上蚀刻图形一点上是类似的,但是 DGS 结构与 PBG 结构最大的区别在于 DGS 的非周期性。27 这些DGS结构传输线的谐振频率点比较高,也就是由于传输线有效电感比较小,其原因是由于DGS结构两边的蚀刻面积产生的有效电感比较小。基于“E”形DGS设计的低通滤波器 与传统的微带低通滤波器比较,采用 DGS 结构设计的低通滤波器除了性能上优越外,总体电路的尺寸更小。28螺旋形DGS结构大大提高了微带线的有效串联电感“E”型DGS通过设计矩形大小、缝隙宽度、缝隙位置可以有效地增加等效电容或者等效电感 威尔金森功率分配器在实现高功分比时,需要使用高特性阻抗的传输线;普通微带线可实现的最高特性阻抗范围120130,不可能实现大于150的特性阻抗;缺陷接地结构(DGS)技术正是解决这个难题的一种有效方法,在微带传输线的接地板上刻蚀DGS,引入了附加电感L,提高了传输线的特性阻抗。1:k2不等功分比威尔金森功率分配器所需的特性阻抗值及其微带线宽29带有DGS的1:4不等分功分器实物图 在中心频率2.4GHz处,实现158.1 特性阻抗的普通微带线线宽约为0.16mm,/4传输线的长度为24.25mm,而在DGS结构下158.1 的微带传输线的线宽为0.5mm,/4传输线的长度为20.5mm;显见由于DGS的应用,158.1 微带线的线宽约为普通微带线线宽的3.125倍,降低了加工难度,同时,/4传输线的长度缩短为原来的84.5%,可使电路更加小型化。30左手材料的研制被左手材料的研制被科学科学杂志评为杂志评为2003年度全球年度全球十大科学进展。十大科学进展。311、宇宙大爆炸有新发现暗物质 2、解开精神疾病之谜特别的基因3、气候变化的影响全球变暖 4、RNA研究新进展小RNA对细胞行为的影响5、捕获单分子细胞中单个分子的活动 6、恒星剧增与伽马射线7、老鼠干细胞能发育出精子和卵细胞 8、研制出、研制出“左手材料左手材料”9、破译Y染色体 10、癌症治疗的新药物32超常介质在微波电路中的应用超常介质在微波电路中的应用 复合左/右手传输线的双频特性 纯右手传输线的色散曲线是一条直线,即只需要一个频率点的参数就可以确定其色散特性,从而另一个频点只能在确定的位置上。因此,纯右手传输线不存在双频特性;对于给定特性阻抗的传输线,CRLH-TL 的色散曲线可以由任意两点()和()来确定,也就是说,CRLH-TL 的色散曲线可以任意的弯曲以满足双频特性。33CRLH-TL 可以实现双频 3dB 电桥,并且可以通过选择适当的结构参数实现电桥的小型化设计。3490相移代替相移代替g/4的微带线的微带线35传统的混合环定向耦合器小型化混合环耦合器-90代替代替27036基片集成波导滤波器相关基片集成波导滤波器相关研究研究 微带线作为一种平面的电路结构,非常适合于系统的混合集成,但是同时这种结构也存在一定的缺陷,由于存在介质损耗、导体损耗和福射损耗,因而它不适于工作在毫米波波段;矩形波导和介质波导等非平面导波结构虽然有着损耗小、性能高的优点,但是由于其自身体积比较大以及难以集成加工,因此传统的波导结构很难广泛地被应用于高集成度系统中。37 基片集成波导是利用基片的上下金属板和两排间隔一定距离的金属孔构成波导的金属壁,由于每排金属孔的相邻孔间距远小于波长,因此由缝隙泄漏的能量很小,这相当于内部填充了介质的矩形波导,所以能够用矩形普通波导实现的结构也都可以用基片集成波导来实现,比如滤波器、功分器、耦合器、振荡器以及天线等。基片集成波导结构示意图38 对于加载SRR(开环谐振器)的波导来说,当它们高于截止频率谐振时,SRR提供了一个阻带。而当SRR的谐振频率低于截至频率谐振时,这个阻带转化为一个通带。应用这种特性去设计带阻、带通以及超宽带滤波器。SRR结构:(a)圆环型,(b)矩形39带通滤波器实物及S参数图不受不受“在填充媒介中波导的横向尺在填充媒介中波导的横向尺寸必须大于等于半波长寸必须大于等于半波长”的约束的约束40微波混沌电路及在测距技术中的微波混沌电路及在测距技术中的应用应用 测距领域中,根据探测信号波形的类型可分为以下三种类型:脉冲信号、随机信号、混沌信号。利用脉冲信号进行测距时,测量精度取决于脉冲信号宽度,测量距离取决于脉冲的峰值功率。当进行远距离高精度测量时,对脉冲信号源提出较高要求,其装置复杂,价格昂贵;利用随机信号(噪声信号或者伪随机码)进行测距时,可以实现高精度、高抗干扰测量,然而高速信号发生器价格高昂;混沌信号从波形上看与噪声相似,同时具有频带宽、不可预知性、良好的自相关特性和“图钉型”模糊函数,因而具有高精度、高抗干扰能力。且混纯信号的产生装置简单、便宜,因此,在测距领域具有良好的应用前景。41“混沌之父混沌之父”美国科学家美国科学家Lorenz对混沌定义给出了一个通俗对混沌定义给出了一个通俗的说法的说法:一个真实的物理系统一个真实的物理系统,在排除了所有的随机性影响后在排除了所有的随机性影响后,仍然貌似随机的表现仍然貌似随机的表现,那么这个系统就是混沌的。那么这个系统就是混沌的。某改进型Colpitts电路的实验装置图42混沌状态的波形图和频谱图43测量传输线故障点的实验装置同轴电缆开路点定位检测44实际破损点检测实际破损点检测在距离检测装置50.4 m处有一宽度为1cm的破损点。实验中依次破坏电缆线的保护层、屏蔽层、绝缘层和铜导线,结果表明:除保护层外,当破坏电缆线的屏蔽层、绝缘层和铜导线,均可被探测到。45混沌雷达测距装置图雷达测距结果46神经网络在射频神经网络在射频和微波无源和微波无源器件建模中的应用器件建模中的应用 在实际的工作环境中,RF 和微波电路的非线性现象是存在于其实际应用之中的一种非常普遍的现象。另外,电路设计规模越大、设计指标和工作频率的频段越高,对器件模型的各项要求也就越高。然而准确的器件模型对于提高微波毫米波电路设计的成功率、缩短研制周期都是非常重要的。鉴于以上这种情况,在考虑 RF 和微波电路非线性的情况下,研究人员如何才能准确地设计微波电路,成为一个值得思考的问题。为此,人们提出了人工神经网络(Artificial Neural Networks,ANN)辅助 RF 和微波电路建模的概念。47模型结构开始选择神经网络计算网络误差评估计算误差是否达到精度?停止训练、计算输出、储备网络结束更新网络权值48多层感知器结构微带阶梯阻抗滤波器版图 网络的输入为电路的几何/物理参数 L、W 和频率 freq,输出为电路 S 参数的实部和虚部(RS11,IS11,RS21,IS21);从电磁仿真结果中提取一定的数据作为神经网路训练数据,通过不断调整网络的内部权向量 w 使误差函数达到最小;当最终的训练误差小于指定值,如 0.01%时,达到了训练要求。训练结束。4950 随着器件的特征尺寸的不断减小,各种物理效应越来越复杂,每个结构的设计变量数目都在增加。为了得到一个可以在器件各种变量的变化范围内表示其相应的 EM 行为的准确的神经网络模型,就需要提取其几何空间中充足的样本点所对应的电磁数据;变量越多,所需要的数据也就越多,需要消耗大量的时间来提取训练数据和测试数据来完成高度非线性映射关系的逼近;因此,需发展有效的高维神经网络方法,在不需要提取大量数据的情况下对多变量器件进行准确建模。51发卡滤波器发卡滤波器高维建模模型5253
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!