资源描述
微分方程模型微分方程模型1 传染病模型传染病模型2 药物在体内的分布与排除药物在体内的分布与排除3 人口的预测和控制人口的预测和控制动态动态模型模型 描述对象特征随时间描述对象特征随时间(空间空间)的演变过程的演变过程.分析对象特征的变化规律分析对象特征的变化规律.预报对象特征的未来性态预报对象特征的未来性态.研究控制对象特征的手段研究控制对象特征的手段.根据函数及其变化率之间的关系确定函数根据函数及其变化率之间的关系确定函数.微分微分方程方程建模建模 根据建模目的和问题分析作出简化假设根据建模目的和问题分析作出简化假设.按照内在规律或用类比法建立微分方程按照内在规律或用类比法建立微分方程.5.1 传染病模型传染病模型 描述传染病的传播过程描述传染病的传播过程.分析受感染人数的变化规律分析受感染人数的变化规律.预报传染病高潮到来的时刻预报传染病高潮到来的时刻.预防传染病蔓延的手段预防传染病蔓延的手段.不是从医学角度分析各种传染病的特殊机理不是从医学角度分析各种传染病的特殊机理,而是按照传播过程的一般规律建立数学模型而是按照传播过程的一般规律建立数学模型.背景背景 与与问题问题传染病的极大危害传染病的极大危害(艾滋病、艾滋病、SARS、)基本基本方法方法 已感染人数已感染人数(病人病人)i(t)每个病人每天有效接触每个病人每天有效接触(足以使人致病足以使人致病)人数为人数为 模型模型1假设假设若有效接触的是病人若有效接触的是病人,则不能使病人数增加则不能使病人数增加必须区分已感染者必须区分已感染者(病人病人)和未感染者和未感染者(健康人健康人)建模建模?模型模型2区分已感染者区分已感染者(病人病人)和未感染者和未感染者(健康人健康人)假设假设1)总人数)总人数N不变,病人和健康不变,病人和健康 人的人的 比例分别为比例分别为 .2)每个病人每天有效接触人数)每个病人每天有效接触人数为为,且且使接触的健康人致病使接触的健康人致病.建模建模 日日接触率接触率SI 模型模型模型模型21/2tmii010ttm传染病高潮到来时刻传染病高潮到来时刻 (日接触率日接触率)tm Logistic 模型病人可以治愈!病人可以治愈!?t=tm,di/dt 最大最大模型模型3传染病无免疫性传染病无免疫性病人治愈成病人治愈成为健康人,健康人可再次被感染为健康人,健康人可再次被感染.增加假设增加假设SIS 模型模型3)病人每天治愈的比例为)病人每天治愈的比例为 日日治愈率治愈率建模建模 日接触率日接触率1/感染期感染期 一个感染期内一个感染期内每个病人的每个病人的有效接触人数,称为有效接触人数,称为接触数接触数./=模型模型3i0i0接触数接触数 =1 阈值阈值感染期内感染期内有效接触使健康者感有效接触使健康者感染的人数不超过原有的病人数染的人数不超过原有的病人数1-1/i0模型模型2(SI模型模型)如何看作模型如何看作模型3(SIS模型模型)的特例的特例idi/dtO1 1Oti 11-1/iOt 1di/dt 1,i01/i(t)先升后降至先升后降至0P2:s01/i(t)单调降至单调降至01/阈值阈值P3P4P2S0模型模型4SIR模型模型预防传染病蔓延的手段预防传染病蔓延的手段 (日接触率日接触率)卫生水平卫生水平 (日日治愈率治愈率)医疗水平医疗水平 传染病不蔓延的条件传染病不蔓延的条件s01/的估计的估计 降低降低 s0提高提高 r0 提高阈值提高阈值 1/降低降低 (=/),群体免疫群体免疫忽略忽略i0模型模型4预防传染病蔓延的手段预防传染病蔓延的手段 降低日接触率降低日接触率 提高日提高日治愈率治愈率 提高移出比例提高移出比例r0 以最终未感染比例以最终未感染比例s 和病人比例最大和病人比例最大值im为度量指度量指标.1/s0i0s i 10.30.30.980.020.03980.34490.60.30.50.980.020.19650.16350.50.51.00.980.020.81220.02000.40.51.250.980.020.91720.020010.30.30.700.020.08400.16850.60.30.50.700.020.30560.05180.50.51.00.700.020.65280.02000.40.51.250.700.020.67550.0200 ,s0 (r0 )s ,im s ,im 模型模型4SIR模型模型被传染人数的估计被传染人数的估计记被传染人数比例记被传染人数比例xT,c1(t)和和 c2(t)按指数规律趋于零按指数规律趋于零0 t T 药物以速率药物以速率k0进入中心进入中心室室3.口服或肌肉注射口服或肌肉注射相当于药物相当于药物(剂量剂量D0)先进入吸收室,吸收后进入中心室先进入吸收室,吸收后进入中心室.吸收室药量吸收室药量x0(t)吸收室吸收室中心室中心室D0参数估计参数估计各种给药方式下的各种给药方式下的 c1(t),c2(t)取决于参数取决于参数k12,k21,k13,V1,V2t=0快速静脉注射快速静脉注射D0,在在ti(i=1,2,n)测得测得c1(ti)由较大的由较大的 用最小二乘法确定用最小二乘法确定A,由较小的由较小的 用最小二乘法确定用最小二乘法确定B,参数估计参数估计进入中心室的药物全部排除进入中心室的药物全部排除 建立建立房室模型房室模型,研究体内研究体内血药浓度血药浓度变化过程变化过程,确定转确定转移速率、排除速率等参数移速率、排除速率等参数,为制订给药方案提供依据为制订给药方案提供依据.机理分析确定模型形式,测试分析估计模型参数机理分析确定模型形式,测试分析估计模型参数.药物在体内的分布与排除药物在体内的分布与排除房室模型:房室模型:一室模型一室模型二室模型二室模型多室模型多室模型非线性非线性(一室一室)模型模型c1较小时近似于线性较小时近似于线性 一级一级排除过程排除过程如如c1较大时近似于常数较大时近似于常数 零级零级排除过程排除过程背景背景 年份年份 1625 1830 1930 1960 1974 1987 1999人口人口(亿亿)5 10 20 30 40 50 60世界人口增长概况世界人口增长概况中国人口增长概况中国人口增长概况 年份年份 1908 1933 1953 1964 1982 1990 1995 2000人口人口(亿亿)3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0研究人口变化规律研究人口变化规律控制人口过快增长控制人口过快增长 3 人口的预测和控制人口的预测和控制做出较准确的预报做出较准确的预报 建立人口数学模型建立人口数学模型 指数增长模型指数增长模型马尔萨斯马尔萨斯1798年年提出提出常用的计算公式常用的计算公式x(t)时刻时刻t的的人口人口基本假设基本假设:人口人口(相对相对)增长率增长率 r 是常数是常数今年人口今年人口 x0,年增长率年增长率 rk年后人口年后人口随着时间增加,人口按指数规律无限增长随着时间增加,人口按指数规律无限增长.与常用公式的一致与常用公式的一致rtextx0)(=?指数增长模型的应用及局限性指数增长模型的应用及局限性 与与19世纪以前欧洲一些地区人口统计数据吻合世纪以前欧洲一些地区人口统计数据吻合.适用于适用于19世纪后迁往加拿大的欧洲移民后代世纪后迁往加拿大的欧洲移民后代.可用于短期人口增长预测可用于短期人口增长预测.不符合不符合1919世纪后多数地区人口增长规律世纪后多数地区人口增长规律.不能预测较长期的人口增长过程不能预测较长期的人口增长过程.1919世纪后人口数据世纪后人口数据人口增长率人口增长率r不是常数不是常数(逐渐下降逐渐下降)阻滞增长模型阻滞增长模型逻辑斯蒂逻辑斯蒂(Logistic)模型模型人口增长到一定数量后,增长率下降的原因:人口增长到一定数量后,增长率下降的原因:资源、环境等因素对人口增长的阻滞作用资源、环境等因素对人口增长的阻滞作用,且阻滞作用随人口数量增加而变大且阻滞作用随人口数量增加而变大假设假设r固有增长率固有增长率(x很小时很小时)xm人口容量(资源、环境能容纳的最大数量)人口容量(资源、环境能容纳的最大数量)r是是x的减函数的减函数dx/dtxOxmxm/2txOx增加先快后慢增加先快后慢xmx0 xm/2阻滞增长模型阻滞增长模型(Logistic模型模型)指数增指数增长模型长模型Logistic 模型的应用模型的应用 经济领域中的增长规律经济领域中的增长规律(耐用消费品的售量耐用消费品的售量).).种群数量模型种群数量模型(鱼塘中的鱼群鱼塘中的鱼群,森林中的树木森林中的树木).S形曲线形曲线参数估计参数估计用指数增长模型或阻滞增长模型作人口用指数增长模型或阻滞增长模型作人口预报,必须先估计模型参数预报,必须先估计模型参数 r 或或 r,xm.模型的参数估计、检验和预报模型的参数估计、检验和预报 指数增长模型指数增长模型阻滞增长模型阻滞增长模型由统计数据用由统计数据用线性最小二乘法线性最小二乘法作参数估计作参数估计例:美国人口数据例:美国人口数据(百万百万)t 1860 1870 1880 1960 1970 1980 1990 2000 x 31.4 38.6 50.2 179.3 204.0 226.5 251.4 281.4 r=0.2022/10年,x0=6.0450 模型的参数估计、检验和预报模型的参数估计、检验和预报 指数增长模型指数增长模型阻滞增长模型阻滞增长模型r=0.2557/10年,xm=392.0886 年年实际人口人口计算人口算人口(指数增指数增长模型模型)计算人口算人口(阻滞增阻滞增长模型模型)17903.96.03.918005.37.45.01960179.3188.0171.31970204.0230.1196.21980226.5281.7221.21990251.4344.8245.32000422.1指数增长模型指数增长模型阻滞增长模型阻滞增长模型用模型计算用模型计算2000年美国人口年美国人口误差约误差约2.5%与实际数据比较与实际数据比较(2000年年281.4)=274.5模型的参数估计、检验和预报模型的参数估计、检验和预报 为作为作模型检验模型检验在参数估计时未用在参数估计时未用2000年实际数据年实际数据加入加入2000年数据重估模型参数年数据重估模型参数r=0.2490,xm=434.0 x(2010)=306.0 预报预报美国美国2010年人口年人口 美国人口普查局美国人口普查局2010年年12月月21日公布:截止到日公布:截止到2010年年4月月1日美国总人口为日美国总人口为3.087亿亿.预报误差不到预报误差不到1%!考虑年龄结构和生育模式的人口模型考虑年龄结构和生育模式的人口模型 年龄分布对于人口预测的重要性年龄分布对于人口预测的重要性.只考虑自然出生与死亡,不计迁移只考虑自然出生与死亡,不计迁移.人口人口发展发展方程方程F(r,t)人口分布函数人口分布函数(年龄年龄r的人口的人口)p(r,t)人口密度函数人口密度函数N(t)人口总数人口总数rm()最高年龄最高年龄人口发展方程人口发展方程一阶偏微分方程一阶偏微分方程人口发展方程人口发展方程Otr定解定解条件条件已知函数已知函数(人口调查人口调查)生育率生育率(控制手段控制手段)生育率生育率 f(t)的分解的分解 总和生育率总和生育率h生育模式生育模式Ok(r,t)(女性女性)性别比函数性别比函数b(r,t)(女性女性)生育数生育数r1,r2(女性女性)育龄区间育龄区间人口控制系统人口控制系统总和生育率总和生育率控制生育的多少控制生育的多少生育模式生育模式控制生育的早晚和疏密控制生育的早晚和疏密 正反馈系统正反馈系统 滞后作用很大滞后作用很大输入输入输入输入输出输出反馈反馈人口指数人口指数1)人口总数)人口总数2)平均年龄)平均年龄3)平均寿命)平均寿命t时刻出生的人,死亡率按时刻出生的人,死亡率按 (r,t)计算的平均存活时间计算的平均存活时间4)老龄化指数)老龄化指数控制生育率控制生育率控制控制 N(t)不过大不过大控制控制 (t)不过高不过高5.7 烟雾的扩散与消失烟雾的扩散与消失现象现象和和问题问题 炮弹在空中爆炸,烟雾向四周扩散,形炮弹在空中爆炸,烟雾向四周扩散,形 成圆形不透光区域成圆形不透光区域.不透光区域不断扩大,然后区域边界逐不透光区域不断扩大,然后区域边界逐 渐明亮,区域缩小,最后烟雾消失渐明亮,区域缩小,最后烟雾消失.建立模型描述烟雾扩散和消失过程,分建立模型描述烟雾扩散和消失过程,分 析消失时间与各因素的关系析消失时间与各因素的关系.问题问题分析分析 无穷空间由瞬时点源导致的扩散过程,无穷空间由瞬时点源导致的扩散过程,用二阶偏微分方程描述烟雾浓度的变化用二阶偏微分方程描述烟雾浓度的变化.观察到的烟雾消失与烟雾对光线的吸收、观察到的烟雾消失与烟雾对光线的吸收、以及仪器对明暗的灵敏程度有关以及仪器对明暗的灵敏程度有关.模型模型假设假设1)烟雾在无穷空间扩散,不受大地和风)烟雾在无穷空间扩散,不受大地和风 的影响;扩散服从扩散定律的影响;扩散服从扩散定律.2)光线穿过烟雾时光强的相对减少与烟雾)光线穿过烟雾时光强的相对减少与烟雾 浓度成正比;无烟雾的大气不影响光强浓度成正比;无烟雾的大气不影响光强.3)穿过烟雾进入仪器的光线只有明暗之分,)穿过烟雾进入仪器的光线只有明暗之分,明暗界限由仪器灵敏度决定明暗界限由仪器灵敏度决定.模型模型建立建立1)烟雾浓度)烟雾浓度 的变化规律的变化规律扩散定律:扩散定律:单位时间通过单位法向单位时间通过单位法向面积的流量面积的流量q与浓度与浓度C的的梯度成正比梯度成正比.曲面积分曲面积分奥奥-高公式高公式1)烟雾浓度)烟雾浓度 的变化规律的变化规律的微分形式,并利用积分中值定理的微分形式,并利用积分中值定理 初始条件初始条件Q炮弹释放的烟雾总量炮弹释放的烟雾总量 单位强度的点源函数单位强度的点源函数 对任意对任意t,C的等值面是球面的等值面是球面 x2+y2+z2=R2,RC 仅当仅当 t,对任意点对任意点(x,y,z),C01)烟雾浓度)烟雾浓度 的变化规律的变化规律2)光强穿过烟雾时的变化规律)光强穿过烟雾时的变化规律假设假设2)光强的相对减少与烟雾浓度成正比)光强的相对减少与烟雾浓度成正比.I(l)沿沿l方向的光强,方向的光强,C(l)沿沿l方向的烟雾强度方向的烟雾强度记未进入烟雾记未进入烟雾(l l0)时光强为时光强为 I(l0)=I03)仪器灵敏度与烟雾明暗界限)仪器灵敏度与烟雾明暗界限烟雾浓度连续变化烟雾浓度连续变化烟雾中光强连续变化烟雾中光强连续变化仪器仪器z-设光源在设光源在z=-,仪器在仪器在z=,则观测到的则观测到的明暗界限为明暗界限为不透光区域有扩大、不透光区域有扩大、缩小、消失的过程缩小、消失的过程穿过烟雾进入仪器的光线只有明暗之穿过烟雾进入仪器的光线只有明暗之分,明暗界限由仪器灵敏度决定分,明暗界限由仪器灵敏度决定.不透光区域边界不透光区域边界4)不透光区域边界的变化规律)不透光区域边界的变化规律对任意对任意t,不透光区域边界是圆周不透光区域边界是圆周不透光区域不透光区域边界半径边界半径r(t)rmOt1t2t结果分析结果分析观测到不透光区域边界达到最大的观测到不透光区域边界达到最大的时刻时刻t1,可以预报烟雾消失的时刻,可以预报烟雾消失的时刻t25.8 万有引力定律的发现万有引力定律的发现背景背景航海业发展航海业发展天文观测精确天文观测精确“地心说地心说”动动摇摇哥白尼:哥白尼:“日心说日心说”伽利略:落体运动伽利略:落体运动开普勒:行星运动三定律开普勒:行星运动三定律变速运动的计算方法变速运动的计算方法牛顿:一切运动有力学原因牛顿:一切运动有力学原因牛顿运动三定律牛顿运动三定律牛顿:研究变速运动,发明微积分(流数法)牛顿:研究变速运动,发明微积分(流数法)开普勒三定律开普勒三定律牛顿运动第二定律牛顿运动第二定律万有引力定律万有引力定律自然科学之数学原理自然科学之数学原理(1687)模型假设模型假设极坐标系极坐标系(r,)1.行星轨道行星轨道a长半轴长半轴,b短短半轴半轴,e离心率离心率3.行星运行周期行星运行周期 T行星位置:向径行星位置:向径2.单位时间单位时间 扫过面积为常数扫过面积为常数 Am 行星质量行星质量 绝对常数绝对常数4.行星运行受力行星运行受力 太阳太阳(0,0)O rP行星行星模型建立模型建立O(太阳太阳)P(行星行星)r向径向径 的基向量的基向量p经常不断地学习,你就什么都知道。你知道得越多,你就越有力量pStudyConstantly,AndYouWillKnowEverything.TheMoreYouKnow,TheMorePowerfulYouWillBe写在最后谢谢你的到来学习并没有结束,希望大家继续努力Learning Is Not Over.I Hope You Will Continue To Work Hard演讲人:XXXXXX 时 间:XX年XX月XX日
展开阅读全文