水文地质一地下水运动基本概念课件

上传人:仙*** 文档编号:241531497 上传时间:2024-07-02 格式:PPTX 页数:55 大小:1.39MB
返回 下载 相关 举报
水文地质一地下水运动基本概念课件_第1页
第1页 / 共55页
水文地质一地下水运动基本概念课件_第2页
第2页 / 共55页
水文地质一地下水运动基本概念课件_第3页
第3页 / 共55页
点击查看更多>>
资源描述
第一章 地下水运动基本概念重要知识点:渗流、典型体元(REV)地下水质点实际流速、空隙平均流速,达西流速及其关系达西定律基本式,微分式,推广式及应用条件渗透系数及其影响因素渗流分类均质、非均质,各向同性、各向异性区别流网绘制1.1 渗流基本概念地下水在岩石空隙中的运动称为渗流(seepage flow/groundwater flow)。发生渗流的区域称为渗流场。渗流场(flow field)由固体骨架和岩石空隙中的水两部分组成。渗流只发生在岩石空隙中。多孔介质概念与特性我们把孔隙岩层称为多孔介质我们把孔隙岩层称为多孔介质(porous media).多孔介质特性多孔介质特性:8彼此连通的网络,几何形态及连通情况异彼此连通的网络,几何形态及连通情况异常复杂,难以用精确的方法来描述。常复杂,难以用精确的方法来描述。8由固体骨架和孔隙组成,孔隙通道是不连由固体骨架和孔隙组成,孔隙通道是不连续的。续的。因此,无论是固体骨架,还是空隙空间,微观上讲都不是连续函数因此,无论是固体骨架,还是空隙空间,微观上讲都不是连续函数普通水流与渗流共同点:1.总体流向取决于水头差 2.流量取决于水头差及沿程损耗区别:水在管道中运动取决于管道大小、形状及粗糙度;渗流运动取决于空隙大小、形状、连通性。渗流特点通道是曲折的,质点运动轨迹弯曲;流速是缓慢的,多数为层流;水流仅在空隙中运动,在整个多孔介质中不连续;通常是非稳定的;通常为缓变流。一、典型体元(Representative elementary volume)在水力学中引进质点的概念,把水看成连续介质,则可用连续函数描述运动要素。为了把渗流场概化为多孔介质连续体,用连续函数描述,引进典型体元的概念。什么是典型体元呢?现以孔隙度为例来讨论。典型体元典型体元(REV)(REV)的提出的提出P1P2典型体元典型体元(REV)(REV)概念的引概念的引入入1.1.若若P P点取颗粒中心且点取颗粒中心且V V只取小于颗粒体积时孔隙率只取小于颗粒体积时孔隙率n=0n=0;2.2.若若P P点取孔隙中心且点取孔隙中心且V V只取小于孔隙体积时孔隙率只取小于孔隙体积时孔隙率n=1n=1;3.3.当当V V取值由一个颗粒或一个孔隙逐渐放大时,取值由一个颗粒或一个孔隙逐渐放大时,n n值会因随机划进的颗粒或孔隙值会因随机划进的颗粒或孔隙体积而产生明显的波动,但随着体积而产生明显的波动,但随着V V取值再增大,取值再增大,n n值波动逐渐减小。值波动逐渐减小。4.4.当当V V取至某个体积时,孔隙率趋于某一平均值取至某个体积时,孔隙率趋于某一平均值n n,此时的,此时的V V称为典型体元称为典型体元(REV)(REV),记为,记为V V5.5.若再增大若再增大V V使其大于使其大于V V,则有可能将,则有可能将P P点外围的非均质区也划进来平均,此时点外围的非均质区也划进来平均,此时n n值可能又产生明显的变化。值可能又产生明显的变化。典型体元的定义把V0称为典型体元。引进REV后就可以把多孔介质处理为连续体,这样多孔介质就处处有孔隙度了。REV究竟有多大?REV相对于单个孔隙是相当大的,但相对于渗流场又是非常小的。理想渗流在REV的基础上,引入理想渗流的概念:地下水充满整个含水层或含水系统(包括空隙和固体骨架),渗流充满整个渗流场。理想渗流等效简化原则:理想渗流通过某断面的流量应等于通过该内孔隙面积的实际流量:质量等效。理想渗流通过某岩层所受到的阻力与实际渗流所受到的阻力相等:能量等效。概化后的理想渗流二、地下水实际流速、渗透流速地下水实际流速质点流速在以P点为中心REV体积上的平均值称为地下水在P点的实际流速。渗透流速假想渗流的速度,是假想的平均流速。实际流速在REV上的平均值。渗透流速与实际流速关系渗透流速与实际流速关系三、水头与水力坡度某砾石含水层中,u=1.65cm/s潜水含水层压强与水头图图114a 潜水含水层的压强与水头潜水含水层的压强与水头承压含水层压强与水头图图114b 承压含水层的压强与水头承压含水层的压强与水头水力坡度大小等于dH/dn,方向沿着等水头线的法线方向指向水头降低的方向的矢量定义为水力坡度,记为J。1.2 渗流基本定律-达西定律一、达西定律法国水力学家H.Darcy通过大量稳定流实验得出:二、达西实验条件l稳定达西实验:得出渗透流速与水力坡度成稳定达西实验:得出渗透流速与水力坡度成正比即线性渗流定律,说明此时地下水的流正比即线性渗流定律,说明此时地下水的流动状态呈层流。动状态呈层流。l实验条件:均匀介质,一维流动,稳定流,实验条件:均匀介质,一维流动,稳定流,层流。层流。l是否适用:非均匀介质,二维或三维流动,是否适用:非均匀介质,二维或三维流动,非稳定流,层流条件?非稳定流,层流条件?非稳定流达西实验(实验一):非稳定流达西实验(实验一):水自上部加入,用溢水管保持稳定水位,水自上部加入,用溢水管保持稳定水位,下部用管口出流,可通过它测定渗流量,下部用管口出流,可通过它测定渗流量,用两根测压管来测量水头值。用两根测压管来测量水头值。达西定理:达西定理:实验结果:实验结果:在非稳定流条件下,地下水运动在非稳定流条件下,地下水运动仍满足线性渗流定律仍满足线性渗流定律三、变水头达西实验达西定律:达西定律:积分有:积分有:显然显然t-lgH曲线应呈直线曲线应呈直线变水头达西实验原理如实验得到得如实验得到得t-lgH曲线曲线呈直线,则说明达西定呈直线,则说明达西定律也适用于不稳定流条律也适用于不稳定流条件。可据直线斜率件。可据直线斜率m求求取土样的渗透系数取土样的渗透系数变水头达西实验求参1.临界雷诺数Re(J.Bear):2.临界渗透流速vc(巴甫洛夫斯基):3.临界水力梯度Jc(罗米捷):4.达西定律下限问题(J0)层流区层流区 过渡区过渡区 紊流区紊流区达西定律适用条件l达西定律的上下限?达西定律的上下限?达西定律的应用条件1.1901年福希海默提出Re10时:2.1912年克拉斯诺波里斯基提出紊流公式:非线性渗透定律微分形式:微分形式:四、达西定律的微分形式五、渗透系数(hydraulic conductivity)是重要的水文地质参数,它表征在一般正常条件下对某种流体而言岩层的渗透能力(permeability)v=KJ;当J=1时,K=vK在数值上是当J=1时的渗透流速,量钢L/T;常用单位cm/s;m/d。渗透系数与哪些因素有关呢?K=f(K=f(孔隙大小、多少、液体性质孔隙大小、多少、液体性质)岩层空隙性质(孔隙大小、多少)岩层空隙性质(孔隙大小、多少)由流体的物理性质决定,与由流体的物理性质决定,与成正比,与成正比,与成反比。流体的物理性质与所处的温度、成反比。流体的物理性质与所处的温度、压力有关。压力有关。影响渗透系数大小的因素渗透率k(intrinsic permeability):比重;:动力粘滞性系数;渗透率k:反映介质几何特性,量纲L2;常用单位:cm2;石油地质中用达西:1 达西=9.8697*10-9cm2.表征反映介质几何特性表征反映介质几何特性渗透系数的表达式多孔介质(概化为等径的平行毛细管束):渗透系数的表达式裂隙介质(概化为走向和缝宽相同的平行板)1.按运动要素按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流是否随时间变化,分:稳定流与非稳定流2.按地下水质点运动状态的混杂程度,分:按地下水质点运动状态的混杂程度,分:层流、紊流与过渡区流态层流、紊流与过渡区流态3.按地下水有无自由表面,分为:按地下水有无自由表面,分为:承压流、无压流、承压承压流、无压流、承压无压流无压流4.按岩层透水性以及对地下水所起作用,分按岩层透水性以及对地下水所起作用,分隔水层、含水层、透水层(弱透水层)隔水层、含水层、透水层(弱透水层)5.按渗流速度在空间上变化的特点,分按渗流速度在空间上变化的特点,分一维流、二维流、三维流(见下页)一维流、二维流、三维流(见下页)六、渗流分类5.按渗流速度在空间上变化的特点,分按渗流速度在空间上变化的特点,分一维流、二维流、三维流一维流、二维流、三维流a.一维流:仅沿一个方向存在流速一维流:仅沿一个方向存在流速b.二维流:沿两个方向存在分流速二维流:沿两个方向存在分流速分:平面二维流、剖面二维流)分:平面二维流、剖面二维流)c.三维流:三维流:三个方向均存在分流速三个方向均存在分流速xyz渗流分类三维流图示岩层按渗透性分类6.按岩层渗透性随空间和方向变化特点,分按岩层渗透性随空间和方向变化特点,分均质各向同性、均质各向异性、非均质各向同性、非均质各向异性几个概念:几个概念:各向同性、各向异性、均质、非均质各向同性、各向异性、均质、非均质岩层按渗透性分类同一点各方向上渗透性相同的介质称为各向同性介同一点各方向上渗透性相同的介质称为各向同性介质质(isotropy medium);同一点各方向上渗透性不同的介质称为各向异性介同一点各方向上渗透性不同的介质称为各向异性介质质(anisotropy medium)。均质均质(homogeneity)、非均质、非均质(inhomogeneity):指指K于空间坐标的关系,即不同位置于空间坐标的关系,即不同位置K是否相同;是否相同;各向同性、各向异性各向同性、各向异性:指同一点不同方向的指同一点不同方向的K是否是否相同。相同。四种介质均质各向同性均质各向异性非均质各向同性非均质各向异性这两对概念可任意组合这两对概念可任意组合四种介质在各向同性介质中K为标量;在各向异性介质中K为张量。思考题:就以上四种介质,分别举例说明自然界哪种岩层属于相应的介质类型。小结上述分类标准不同,无从属关系,可以上述分类标准不同,无从属关系,可以组合组合均质与非均质,各向同性与各向异性概均质与非均质,各向同性与各向异性概念容易混淆念容易混淆各向同性各向同性K为标量,各向异性为标量,各向异性K为张量为张量各向同性流场,各向同性流场,J与与v共线共线各向异性流场,各向异性流场,J与与v一般不共线一般不共线1.渗透系数的张量表示式渗透系数的张量表示式2.达西定律的推广形式:达西定律的推广形式:各向同性介质各向异性介质1.3 各向异性介质中地下水流的达西定律3.渗透系数张量的坐标轴转换渗透系数张量的坐标轴转换渗透主轴方向与所选x,y,z方向一致时渗透主轴方向与所选x,y,z方向不一致时,须进行坐标转换以平面二维流问题为例:渗透系数张量的坐标轴转换3.渗透系数张量的坐标轴转换渗透系数张量的坐标轴转换渗透主轴方向与所选x,y,z方向不一致时,须进行坐标转换以平面二维流问题为例:设R为旋转矩阵渗透系数张量的坐标轴转换1.定义:地下水在非均质岩层中运动,当水流通过渗透系数突变的分界面时,出现流线改变方向的现象2.折射定理3.几点讨论:(1)当K1K2,10,流线才会折射(2)当K1=K2,1=2(3)只有在0 190,才会折射(4)在层界面上发生的流线折射并不改变地下水流总方向,总体流向仍受边界条件和源汇等控制。地下水通过非均质界面的折射现象1.4 流网 (flow nets)一、定义渗流场中由一系列流线和等水头线(等势线)组成的网格称为流网。各向同性介质中流线与等水头线正交,流网为正交网格。因为各向同性介质中流速向量与水力坡度向量方向一致。各向异性介质中,流速向量与水力坡度向量方向不一致,因此流线与等水头线一般不正交。二、各向同性介质中流网特征等水头线(面)与流线(面)正交;等水头线(面)与流线(面)不是两个独立问题,知道一方就可据正交原则推求另一方。正交网格中,每两条流线间的流量相等。三、流网绘制:求解渗流场中运动要素的空间分布用数学方法求解运动方程:求解空间水头分布绘制等水头线;求解流函数绘制流线。物理模型模拟:水电比拟。现场测定(测定水头分布,绘制等水头线,再据正交原则绘制流线)信手流网:据流场边界性质和介质特性,半定量地绘制流网。信手流网绘制原则:首先分析水文地质条件,搞清补给区、排泄区、或源汇项分布、边界条件等。先绘制肯定的流线和等水头线:隔水边界是流线,无入渗、无蒸发条件下潜水面是流线,湖泊、河流边界可看成等水头线,有两个以上排泄点时应确定分水线、面、点。四、流网的意义解释水文地质现象;判断地下水系统内部结构;分析地下水的补给、排泄、径流特征;计算渗流场任意点的水头、压强、水力坡度、渗透流速等;据流网选择垃圾填埋场位置。五、几个典型流网特征河间地块流网图层状非均质介质中的流网典型流网特征p经常不断地学习,你就什么都知道。你知道得越多,你就越有力量pStudyConstantly,AndYouWillKnowEverything.TheMoreYouKnow,TheMorePowerfulYouWillBe写在最后Thank You在别人的演说中思考,在自己的故事里成长Thinking In Other PeopleS Speeches,Growing Up In Your Own Story讲师:XXXXXX XX年XX月XX日
展开阅读全文
相关资源
相关搜索

最新文档


当前位置:首页 > 管理文书 > 施工组织


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!