(课标专用 5年高考3年模拟A版)高考数学 第十章 概率、统计及统计案例 2 统计及统计案例试题 文-人教版高三数学试题

上传人:文*** 文档编号:240558127 上传时间:2024-04-15 格式:DOCX 页数:51 大小:1.38MB
返回 下载 相关 举报
(课标专用 5年高考3年模拟A版)高考数学 第十章 概率、统计及统计案例 2 统计及统计案例试题 文-人教版高三数学试题_第1页
第1页 / 共51页
(课标专用 5年高考3年模拟A版)高考数学 第十章 概率、统计及统计案例 2 统计及统计案例试题 文-人教版高三数学试题_第2页
第2页 / 共51页
(课标专用 5年高考3年模拟A版)高考数学 第十章 概率、统计及统计案例 2 统计及统计案例试题 文-人教版高三数学试题_第3页
第3页 / 共51页
亲,该文档总共51页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述
统计及统计案例挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点抽样方法理解随机抽样的必要性和重要性;会用简单随机抽样方法从总体中抽取样本2018课标全国,14,5分抽样方法抽样方法的选择统计图表了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率分布折线图、茎叶图,体会它们各自的特点2017课标全国,3,5分认识折线图利用折线图解决实际问题2018课标全国,3,5分认识统计图由统计图解决实际问题2018课标全国,19,12分用频率分布直方图解决实际问题频率分布与数字特征样本的数字特征理解样本数据标准差的意义和作用,会计算数据标准差;能从样本数据中提取基本的数字特征,并给出合理的解释;会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征;会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题2017课标全国,2,5分理解方差或标准差样本的数字特征2014课标,18,12分频率分布直方图与数字特征数字特征与实际应用2014课标,19,12分茎叶图的认识茎叶图与实际应用变量间的相关性会作两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系;了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程2016课标全国,18,12分相关系数与回归方程数据处理2017课标全国,19,12分相关系数与数字特征数据处理2015课标,19,12分回归方程的求解非线性关系转换成线性关系独立性检验了解独立性检验的基本思想、方法及其简单应用,能通过计算判断两个变量的相关程度2017课标全国,19,12分频率分布直方图与独立性检验数据的处理2018课标全国,18,12分茎叶图与独立性检验数据的处理分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义、频率分布直方图、平均数、方差的计算、识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的竖直方向的长度=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.破考点【考点集训】考点一抽样方法1.(2018山东烟台11月联考,4)中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩,按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为() A.2B.4C.5D.6答案B2.(2018宁夏银川一中月考,4)用系统抽样的方法从300名学生中抽取容量为20的样本,将300名学生从1300编号,按编号顺序平均分组.若第16组应抽出的号码为232,则第一组中抽出的号码是()A.5B.6C.7D.8答案C考点二统计图表1.(2018四川达州模拟,4)某8人一次比赛得分的茎叶图如图所示,这组数据的中位数和众数分别是()A.85和92B.87和92C.84和92D.85和90答案B2.(2017河南新乡第一次调研,3)统计新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿体重在(2 700,3 000克内的频率为()A.0.001B.0.1C.0.2D.0.3答案D考点三样本的数字特征1.(2018湖北华师一附中月考,3)某人到甲、乙两市各7个小区调查空置房情况,将调查得到的小区空置房的套数绘成了如图所示的茎叶图,则调查中甲市空置房套数的中位数与乙市空置房套数的中位数之差为()A.4B.3C.2D.1答案B2.(2018山东济南一模,3)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x,方差为s2,则()A.x=4,s22C.x4,s24,s22答案A考点四变量间的相关性1.(2018河南焦作四模,3)已知变量x和y的统计数据如下表:x34567y2.5344.56根据上表可得回归直线方程为y=bx-0.25,据此可以预测当x=8时,y=()A.6.4B.6.25C.6.55D.6.45答案C2.(2018湖南张家界三模,4)已知变量x,y之间的线性回归方程为y=-0.7x+10.3,且变量x,y之间的一组相关数据如下表所示,则下列说法错误的是()x681012y6m32A.变量x,y之间成负相关关系B.可以预测,当x=20时,y=-3.7C.m=4D.该回归直线必过点(9,4)答案C考点五独立性检验1.(2017江西九校一模,7)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市总计愿生452065不愿生132235总计5842100附表:P(K2k0)0.0500.0100.001k03.8416.63510.828由K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)算得,K2=100(4522-2013)2584235659.616,参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C.有99%以上的把握认为“生育意愿与城市级别有关”D.有99%以上的把握认为“生育意愿与城市级别无关”答案C2.(2018贵州六校12月联考,18)海南大学某餐饮中心为了解新生的饮食习惯,在全校新生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生602080北方学生101020合计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”?(2)已知在被调查的北方学生中有5名中文系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.P(K2k0)0.100.050.010k02.7063.8416.635附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).解析(1)将22列联表中的数据代入公式计算,得K2=100(6010-2010)270308020=100214.762.由于4.7623.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名中文系学生中任取3人的所有可能结果所组成的基本事件空间=(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3),其中ai表示喜欢甜品的学生,i=1,2,bj表示不喜欢甜品的学生,j=1,2,3.由10个基本事件组成,且这些基本事件的出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则A=(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3).事件A由7个基本事件组成,因而P(A)=710.炼技法【方法集训】方法1解与频率分布直方图有关问题的方法1.(2016山东,3,5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是() A.56B.60C.120D.140答案D2.(2017江苏南京调研,3)为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间40,80内,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间40,60)内的汽车有辆.答案80方法2样本的数字特征的求解及其应用1.(2015山东,6,5分)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:)制成如图所示的茎叶图.考虑以下结论:甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时的平均气温高于乙地该月14时的平均气温;甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为()A.B.C.D.答案B2.(2018四川德阳模拟,13)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)的频数分布直方图如图所示,如果得分的中位数为a,众数为b,平均数为c,则a、b、c中的最大者是.答案c方法3回归直线方程的求解与运用1.(2017安徽合肥一中等四校联考,6)某品牌牛奶的广告费用x(万元)与销售额y(万元)的统计数据如下表:广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程y=bx+a中的b为9.4,据此估计,广告费用为7万元时销售额为()A.74.9万元B.65.5万元C.67.7万元D.72.0万元答案A2.(2018湘东五校12月联考,18)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差x()1011131286就诊人数y222529261612该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月数据的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据求出y关于x的线性回归方程y=bx+a;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?参考公式:b=i=1nxiyi-nx yi=1nxi2-nx2=i=1n(xi-x)(yi-y)i=1n(xi-x)2,a=y-bx;参考数据:1125+1329+1226+816=1 092,112+132+122+82=498.解析(1)设抽到相邻两个月的数据为事件A.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的,其中,抽到相邻两个月的数据的情况有5种,所以P(A)=515=13.(2)由数据求得x=11,y=24,由公式求得b=187,则a=y-bx=-307,所以y关于x的线性回归方程为y=187x-307.(3)由(2)知,当x=10时,y=1507,1507-222,当x=6时,y=787,787-122.706,所以据此列联表判断,在犯错误的概率不超过0.10的前提下,认为网购迷与年龄不超过40岁有关.(2)由频数分布直方图知,超级网购迷共有10人,记其中年龄超过40岁的2名市民为A、B,其余8名市民记为c、d、e、f、g、h、m、n,现从10人中任取2人,基本事件有AB、Ac、Ad、Ae、Af、Ag、Ah、Am、An、Bc、Bd、Be、Bf、Bg、Bh、Bm、Bn、cd、ce、cf、cg、ch、cm、cn、de、df、dg、dh、dm、dn、ef、eg、eh、em、en、fg、fh、fm、fn、gh、gm、gn、hm、hn、mn,共有45种,其中至少有1名市民年龄超过40岁的基本事件是AB、Ac、Ad、Ae、Af、Ag、Ah、Am、An、Bc、Bd、Be、Bf、Bg、Bh、Bm、Bn,共17种,故所求的概率P=1745.2.(2017江西红色七校第一次联考,18)某学校为了了解学生使用手机的情况,分别在高一和高二两个年级中各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.高一年级的学生日均使用手机时间的频数分布表时间分组0,20)20,40)40,60)60,80)80,100)100,120频数12202418224高二年级的学生日均使用手机时间的频率分布直方图(1)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大,请说明理由;(2)在对高二年级学生的抽查中,已知随机抽到的女生有55名,其中10名为“手机迷”.根据已知条件完成下面的22列联表,并据此资料,你有多大的把握认为“手机迷”与性别有关?非手机迷手机迷合计男女合计附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.参考数据P(K2k0)0.150.100.050.025k02.0722.7063.8415.024解析(1)估计高一年级的学生是“手机迷”的概率大.理由:由频数分布表可知,高一年级的学生是“手机迷”的概率为22+4100=0.26,由频率分布直方图可知,高二年级的学生是“手机迷”的概率为(0.002 5+0.010)20=0.25,因为0.260.25,所以高一年级的学生是“手机迷”的概率大.(2)由频率分布直方图可知,在抽取的100人中,“手机迷”有(0.010+0.002 5)20100=25人,“非手机迷”有100-25=75人.22列联表如下:非手机迷手机迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得K2=100(3010-4515)275254555=100333.030.因为3.0302.706,所以有90%的把握认为“手机迷”与性别有关.过专题【五年高考】A组统一命题课标卷题组考点一抽样方法(2018课标全国,14,5分)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是.答案分层抽样考点二统计图表1.(2018课标全国,3,5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案A2.(2017课标全国,3,5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案A3.(2015课标,3,5分)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关答案D4.(2018课标全国,19,12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量0,0.1)0.1,0.2)0.2,0.3)0.3,0.4)0.4,0.5)0.5,0.6)0.6,0.7)频数13249265使用了节水龙头50天的日用水量频数分布表日用水量0,0.1)0.1,0.2)0.2,0.3)0.3,0.4)0.4,0.5)0.5,0.6)频数151310165(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水.(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解析(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.20.1+10.1+2.60.1+20.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天日用水量的平均数为x1=150(0.051+0.153+0.252+0.354+0.459+0.5526+0.655)=0.48.该家庭使用了节水龙头后50天日用水量的平均数为x2=150(0.051+0.155+0.2513+0.3510+0.4516+0.555)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)365=47.45(m3).考点三样本的数字特征1.(2017课标全国,2,5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是() A.x1,x2,xn的平均数B.x1,x2,xn的标准差C.x1,x2,xn的最大值D.x1,x2,xn的中位数答案B2.(2014课标,18,12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组75,85)85,95)95,105)105,115)115,125)频数62638228(1)作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解析(1)频率分布直方图如图.(2)质量指标值的样本平均数为x=800.06+900.26+1000.38+1100.22+1200.08=100.质量指标值的样本方差为s2=(-20)20.06+(-10)20.26+00.38+1020.22+2020.08=104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定.考点四变量间的相关性1.(2017课标全国,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得x=116i=116xi=9.97,s=116i=116(xi-x)2=116(i=116xi2-16x2)0.212,i=116(i-8.5)218.439,i=116(xi-x)(i-8.5)=-2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,16.(1)求(xi,i)(i=1,2,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(x-3s,x+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(x-3s,x+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(xi,yi)(i=1,2,n)的相关系数r=i=1n(xi-x)(yi-y)i=1n(xi-x)2i=1n(yi-y)2.0.0080.09.解析(1)由样本数据得(xi,i)(i=1,2,16)的相关系数为r=i=116(xi-x)(i-8.5)i=116(xi-x)2i=116(i-8.5)2=-2.780.2121618.439-0.18.由于|r|6.635,所以有99%的把握认为两种生产方式的效率有差异.2.(2017课标全国,19,12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量50 kg箱产量50 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:P(K2k)0.0500.0100.001k3.8416.63510.828,K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).解析(1)旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)5=0.62.因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表:箱产量6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.B组自主命题省(区、市)卷题组考点一抽样方法1.(2015湖南,2,5分)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151上的运动员人数是() A.3B.4C.5D.6答案B2.(2017江苏,3,5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.答案18考点二统计图表1.(2015湖北,14,5分)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间0.3,0.9内,其频率分布直方图如图所示.(1)直方图中的a=;(2)在这些购物者中,消费金额在区间0.5,0.9内的购物者的人数为.答案(1)3(2)6 0002.(2017北京,17,13分)某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:20,30),30,40),80,90,并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.解析(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)10=0.9,分数在区间40,50)内的人数为100-1000.9-5=5.所以总体中分数在区间40,50)内的人数估计为4005100=20.(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)10100=60,所以样本中分数不小于70的男生人数为6012=30.所以样本中的男生人数为302=60,女生人数为100-60=40,男生和女生人数的比例为6040=32.所以根据分层抽样原理,总体中男生和女生人数的比例估计为32.考点三样本的数字特征1.(2017山东,8,5分)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7D.5,7答案A2.(2018江苏,3,5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为.8999011答案903.(2016江苏,4,5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.答案0.1考点四变量间的相关性1.(2015湖北,4,5分)已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是()A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关答案C2.(2015重庆,17,13分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份20102011201220132014时间代号t12345储蓄存款y(千亿元)567810(1)求y关于t的回归方程y=bt+a;(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程y=bt+a中,b=i=1ntiyi-ntyi=1nti2-nt2,a=y-bt.解析(1)列表计算如下:itiyiti2tiyi11515226412337921448163255102550153655120这里n=5,t=1ni=1nti=155=3,y=1ni=1nyi=365=7.2.又ltt=i=1nti2-nt2=55-532=10,lty=i=1ntiyi-nty=120-537.2=12,从而b=ltyltt=1210=1.2,a=y-bt=7.2-1.23=3.6,故所求回归方程为y=1.2t+3.6.(2)将t=6代入回归方程可预测该地区2015年的人民币储蓄存款为y=1.26+3.6=10.8(千亿元).考点五独立性检验1.(2014江西,7,5分)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1成绩性别不及格及格总计男61420女102232总计163652表2视力性别好差总计男41620女122032总计163652表3智商性别偏高正常总计男81220女82432总计163652表4 阅读量性别丰富不丰富总计男14620女23032总计163652A.成绩B.视力C.智商D.阅读量答案D2.(2014安徽,17,12分)某高校共有学生15 000人,其中男生10 500人,女生4 500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(1)应收集多少位女生的样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:0,2,(2,4,(4,6,(6,8,(8,10,(10,12.估计该校学生每周平均体育运动时间超过4小时的概率;(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)P(K2k0)0.100.050.0100.005k02.7063.8416.6357.879解析(1)3004 50015 000=90,所以应收集90位女生的样本数据.(2)由频率分布直方图得1-2(0.100+0.025)=0.75,所以该校学生每周平均体育运动时间超过4小时的概率的估计值为0.75.(3)由(2)知,300位学生中有3000.75=225人的每周平均体育运动时间超过4小时,75人的每周平均体育运动时间不超过4小时.又因为样本数据中有210份是关于男生的,90份是关于女生的,所以每周平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表男生女生总计每周平均体育运动时间不超过4小时453075每周平均体育运动时间超过4小时16560225总计21090300结合列联表可算得K2=300(4560-30165)27522521090=100214.7623.841.所以,有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.C组教师专用题组考点一抽样方法1.(2015湖北,2,5分)我国古代数学名著数书九章有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为() A.134石 B.169石C.338石 D.1 365石答案B2.(2015北京,4,5分)某校老年、中年和青年教师的人数见下表.采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()类别人数老年教师900中年教师1 800青年教师1 600合计4 300A.90B.100C.180D.300答案C3.(2014四川,2,5分)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是()A.总体 B.个体C.样本的容量D.从总体中抽取的一个样本答案A4.(2014重庆,3,5分)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250答案A5.(2014广东,6,5分)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.20答案C6.(2014湖南,3,5分)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2p3B.p2=p3p1C.p1=p3p2D.p1=p2=p3答案D7.(2015福建,13,4分)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.答案258.(2014湖北,11,5分)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为件.答案1 8009.(2014天津,9,5分)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4556,则应从一年级本科生中抽取名学生.答案6010.(2014山东,16,12分)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.地区ABC数量50150100解析(1)因为样本容量与总体中的个体数的比是650+150+100=150,所以样本中包含三个地区的个体数量分别是:50150=1,150150=3,100150=2,所以A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2,则抽取的这2件商品构成的所有基本事件为:A,B1,A,B2,A,B3,A,C1,A,C2,B1,B2,B1,B3,B1,C1,B1,C2,B2,B3,B2,C1,B2,C2,B3,C1,B3,C2,C1,C2,共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有B1,B2,B1,B3,B2,B3,C1,C2,共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.考点二统计图表1.(2014山东,8,5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为12,13),13,14),14,15),15,16),16,17,将其按从左到右的顺序分别编号为第一组,第二组,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6B.8C.12D.18答案C2.(2016课标全国,19,12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 临时分类 > 等级考试


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!