资源描述
课时跟踪检测(三十三) 高考基础题型得分练1在等比数列an中,如果a1a418,a2a312,那么这个数列的公比为()A2B C2或 D2或答案:C解析:设数列an的公比为q,由,得q2或q.22017湖北宜昌模拟在等比数列an中,若a13,a424,则a3a4a5()A33B72 C84D189答案:C解析:由已知,得q38,解得q2,则有a3a4a5a1(q2q3q4)3(4816)84.3已知x,y,zR,若1,x,y,z,3成等比数列,则xyz()A3B3 C3 D3答案:C解析:由等比中项知,y23,y.又y与1,3符号相同,y,y2xz,xyzy33.42017河北衡水模拟已知正数组成的等比数列an,若a1a20100,则a7a14的最小值为()A20B25 C50D不存在答案:A解析:(a7a14)2aa2a7a144a7a144a1a20400,a7a1420.52017山东临沂模拟已知等比数列an的前n项和为Sna2n1,则a()AB C D答案:A解析:当n2时,anSnSn1a2n1a2n2a2n2.当n1时,a1S1a,a,解得a.6已知数列1,a1,a2,9是等差数列,数列1,b1,b2,b3,9是等比数列,则()A.B C. D答案:C解析:因为1,a1,a2,9是等差数列,所以a1a21910.又1,b1,b2,b3,9是等比数列,所以b199,易知b20,所以b23,所以.72015浙江卷已知an是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()Aa1d0,dS40Ba1d0,dS40Ca1d0,dS40Da1d0,dS40答案:B解析:a3,a4,a8成等比数列,(a13d)2(a12d)(a17d),整理,得a1d,a1dd20.又S44a1d,dS40,故选B.8设各项都是正数的等比数列an,Sn为其前n项和,且S1010,S3070,那么S40()A150B200C150或200D400或50答案:A解析:依题意,数列S10,S20S10,S30S20,S40S30成等比数列,因此有(S20S10)2S10(S30S20),即(S2010)210(70S20),故S2020或S2030.又S200,因此S2030,S20S1020,S30S2040,故S40S3080,S40150.故选A.92017宁夏银川一模等比数列an的前n项和为Sn,若S1,S3,S2成等差数列,则an的公比q等于_答案:解析:S1,S3,S2成等差数列,a1a1a1q2(a1a1qa1q2)a10,q0,解得q.102017河北石家庄模拟在等比数列an中,若a7a8a9a10,a8a9,则_.答案:解析:因为,由等比数列的性质知,a7a10a8a9,所以.11已知各项均为正数的等比数列an的前n项和为Sn,若S43S2,a32,则a7_.答案:8解析:设等比数列an的首项为a1,公比为q,显然q1且q0.因为S43S2,所以,解得q22.因为a32,所以a7a3q42228.冲刺名校能力提升练12017青海西宁复习检测已知数列an是首项a14的等比数列,且4a1,a5,2a3成等差数列,则其公比q()A1B1 C1或1 D答案:C解析:4a1,a5,2a3成等差数列,2a54a12a3,即2a1q44a12a1q2,又a14,则有q4q220,解得q21,q1,故选C.22017山东临沂模拟数列an中,已知对任意nN*,a1a2a3an3n1,则aaaa()A(3n1)2B(9n1)C9n1 D(3n1)答案:B解析:a1a2an3n1,nN*,当n2时,a1a2an13n11,当n2时,an3n3n123n1.又n1时,a12适合上式,an23n1,故数列a是首项为4,公比为9的等比数列因此aaa(9n1)3已知数列an满足log3an1log3an1(nN*),且a2a4a69,则log (a5a7a9)()A5B C5 D答案:A解析:log3an1log3an1,an13an.数列an是以3为公比的等比数列a2a4a6a2(1q2q4)9.a5a7a9a5(1q2q4)a2q3(1q2q4)35.log355.42017辽宁沈阳质量监测数列an是等比数列,若a22,a5,则a1a2a2a3anan1_.答案:(14n)解析:设等比数列an的公比为q,由等比数列的性质知,a5a2q3,解得q,所以a14.a2a3a1a2,anan1an1an(n2)设bnanan1,可以得出数列bn是以8为首项,以为公比的等比数列,所以a1a2a2a3anan1为数列bn的前n项和,由等比数列的前n项和公式,得a1a2a2a3anan1(14n)5.已知公比不为1的等比数列an的首项a1,前n项和为Sn,且a4S4,a5S5,a6S6成等差数列(1)求等比数列an的通项公式;(2)对nN*,在an与an1之间插入3n个数,使这3n2个数成等差数列,记插入的这3n个数的和为bn,求数列bn的前n项和Tn.解:(1)因为a4S4,a5S5,a6S6成等差数列,所以a5S5a4S4a6S6a5S5,即2a63a5a40,所以2q23q10,因为q1,所以q,所以等比数列an的通项公式为an.(2)由题意,得bn3nn,所以Tn.6已知数列an满足a15,a25,an1an6an1(n2)(1)求证:an12an是等比数列;(2)求数列an的通项公式(1)证明:an1an6an1(n2),an12an3an6an13(an2an1)(n2)a15,a25,a22a115,an2an10(n2),3(n2),数列an12an是以15为首项,以3为公比的等比数列(2)解:由(1),得an12an153n153n,则an12an53n,an13n12(an3n)又a132,an3n0,an3n是以2为首项,以2为公比的等比数列an3n2(2)n1,即an2(2)n13n.
展开阅读全文