材料力学:第一章绪论

上传人:努力****83 文档编号:240057813 上传时间:2024-03-13 格式:PPT 页数:77 大小:6.57MB
返回 下载 相关 举报
材料力学:第一章绪论_第1页
第1页 / 共77页
材料力学:第一章绪论_第2页
第2页 / 共77页
材料力学:第一章绪论_第3页
第3页 / 共77页
点击查看更多>>
资源描述
材料力学材料力学刘鸿文主编刘鸿文主编(第第4 4版版)目录目录第一章第一章 绪绪 论论目录目录第一章第一章 绪论绪论1.1 1.1 材料力学的任务材料力学的任务1.2 1.2 变形固体的基本假设变形固体的基本假设1.3 1.3 外力及其分类外力及其分类1.4 1.4 内力、截面法及应力的概念内力、截面法及应力的概念1.5 1.5 变形与应变变形与应变1.6 1.6 杆件变形的基本形式杆件变形的基本形式目录目录1.1 1.1 材料力学的任务材料力学的任务 传统具有柱、梁、檩、椽的木传统具有柱、梁、檩、椽的木制房屋结构制房屋结构古代建筑结构古代建筑结构目录目录建于隋代(建于隋代(605605年)的河北赵州桥年)的河北赵州桥桥桥长长64.464.4米,跨径米,跨径37.0237.02米,用石米,用石28002800吨吨一、材料力学与工程应用一、材料力学与工程应用古代建筑结构古代建筑结构建于辽代(建于辽代(10561056年)的山西应县佛宫寺释迦塔年)的山西应县佛宫寺释迦塔塔高塔高9 9层共层共67.3167.31米,用木材米,用木材74007400吨吨900900多年来历经数次地震不倒,现存唯一木塔多年来历经数次地震不倒,现存唯一木塔目录目录1.1 1.1 材料力学的任务材料力学的任务四川彩虹桥坍塌四川彩虹桥坍塌目录目录1.1 1.1 材料力学的任务材料力学的任务美国纽约马尔克大桥坍塌美国纽约马尔克大桥坍塌比萨斜塔比萨斜塔1.1 1.1 材料力学的任务材料力学的任务目录目录1.1 1.1 材料力学的任务材料力学的任务1 1、构件:、构件:工程结构或工程结构或机械的每一组成部分。机械的每一组成部分。(例如:行车结构中的(例如:行车结构中的横梁、吊索等)横梁、吊索等)理论力学理论力学研究研究刚体刚体,研究,研究力力与与运动运动的关系。的关系。材料力学材料力学研究研究变形体变形体,研究,研究力力与与变形变形的关系。的关系。二、基本概念二、基本概念2 2、变形:、变形:在外力作用下,固体内各点相对位置的在外力作用下,固体内各点相对位置的改变。改变。(宏观上看就是物体尺寸和形状的改变)宏观上看就是物体尺寸和形状的改变)3 3、内力:、内力:构件内由于构件内由于发生变形而产生的相发生变形而产生的相互作用力。互作用力。(内力随内力随外力的增大而增大外力的增大而增大)强度:强度:在载荷作用下,在载荷作用下,构件构件抵抗破坏抵抗破坏的能力。的能力。刚度:刚度:在载荷作用下,构件在载荷作用下,构件抵抗变形抵抗变形的能力。的能力。塑性变形塑性变形(残余变形残余变形)外力解除后不能消失外力解除后不能消失 弹性变形弹性变形 随外力解除而消失随外力解除而消失1.1 1.1 材料力学的任务材料力学的任务目录目录1.1 1.1 材料力学的任务材料力学的任务4 4、稳定性:、稳定性:在载荷在载荷作用下,作用下,构构件件保持原有保持原有平衡状态平衡状态的的能力。能力。强度、刚度、稳定性强度、刚度、稳定性是衡量构件承载能力是衡量构件承载能力的三个方面,材料力学就是研究构件承载能力的三个方面,材料力学就是研究构件承载能力的一门科学。的一门科学。目录目录 研究构件的强度、刚度和稳定性研究构件的强度、刚度和稳定性,还需要了解材料的还需要了解材料的力学性能力学性能。因此在。因此在进行理论分析的基础上,进行理论分析的基础上,实验研究实验研究是完成材料力学的任务所必需的途径和是完成材料力学的任务所必需的途径和手段。手段。目录目录1.1 1.1 材料力学的任务材料力学的任务 材料力学的任务就是在满足强度、刚度材料力学的任务就是在满足强度、刚度和稳定性的要求下,为设计和稳定性的要求下,为设计既经济又安全既经济又安全的构的构件,提供必要的理论基础和计算方法。件,提供必要的理论基础和计算方法。三、材料力学的任务三、材料力学的任务若:构件横截面尺寸不足或形状不合理,或材料选用不当 _ 不满足上述要求,不能保证安全工作.若:不恰当地加大横截面尺寸或选用优质材料 _ 增加成本,造成浪费均不可取构件的分类:构件的分类:杆件、板壳杆件、板壳*、块体、块体*1.1 1.1 材料力学的任务材料力学的任务材料力学主要研究材料力学主要研究杆件杆件等截面直杆等截面直杆等直杆等直杆四、材料力学的研究对象四、材料力学的研究对象直杆直杆 轴线为直线的杆轴线为直线的杆曲杆曲杆 轴线为曲线的杆轴线为曲线的杆等截面杆等截面杆横截面的大小横截面的大小 形状不变的杆形状不变的杆变截面杆变截面杆横截面的大小横截面的大小 或形状变化的杆或形状变化的杆目录目录1.2 1.2 变形固体的基本假设变形固体的基本假设1 1、连续性假设:、连续性假设:认为整个物体体积内毫无空隙地充满物质认为整个物体体积内毫无空隙地充满物质 在外力作用下,一切固体都将发生变形,在外力作用下,一切固体都将发生变形,故称为变形固体。故称为变形固体。在材料力学中,对变形固体在材料力学中,对变形固体作如下假设:作如下假设:目录目录灰口铸铁的显微组织灰口铸铁的显微组织球墨铸铁的显微组织球墨铸铁的显微组织2 2、均匀性假设:、均匀性假设:认为物体内的任何部分,其力学性能相同认为物体内的任何部分,其力学性能相同1.2 1.2 变形固体的基本假设变形固体的基本假设普通钢材的显微组织普通钢材的显微组织优质钢材的显微组织优质钢材的显微组织目录目录1.2 1.2 变形固体的基本假设变形固体的基本假设A AB BC CF F12 如右图,如右图,远小于构件的最小尺寸,远小于构件的最小尺寸,所以通过节点平衡求各杆内力时,把支所以通过节点平衡求各杆内力时,把支架的变形略去不计。计算得到很大的简架的变形略去不计。计算得到很大的简化。化。4 4、小变形与线弹性范围、小变形与线弹性范围3 3、各向同性假设:、各向同性假设:认为在物体内各个不同方向的力学性能相同认为在物体内各个不同方向的力学性能相同(沿不同方向力学性能不同的材料称为各向异性(沿不同方向力学性能不同的材料称为各向异性材料。如木材、胶合板、纤维增强材料等)材料。如木材、胶合板、纤维增强材料等)认为构件的变形极其微小,认为构件的变形极其微小,比构件本身尺寸要小得多。比构件本身尺寸要小得多。目录目录1.3 1.3 外力及其分类外力及其分类外力:外力:来自构件外部的力(载荷、约束反力)来自构件外部的力(载荷、约束反力)按外力作用的方式分类按外力作用的方式分类体积力:体积力:连续分布于物体内部各点连续分布于物体内部各点 的力。的力。如重力和惯性力如重力和惯性力表面力:表面力:连续分布于物体表面上的力。连续分布于物体表面上的力。如油缸内壁的如油缸内壁的压力,水坝受到的水压力等均为分布力压力,水坝受到的水压力等均为分布力若外力作用面积远小于物体表面的尺寸,可若外力作用面积远小于物体表面的尺寸,可作为作用于一点的集中力。作为作用于一点的集中力。如火车轮对钢轨如火车轮对钢轨的压力等的压力等分布力分布力:集中力集中力:目录目录按外力与时间的关系分类按外力与时间的关系分类载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著,称为静载。称为静载。静载静载:动载动载:载荷随时间而变化。载荷随时间而变化。如交变载荷和冲击载荷如交变载荷和冲击载荷1.3 1.3 外力及其分类外力及其分类交变载荷交变载荷冲击载荷冲击载荷目录目录内力:内力:外力作用引起构件内部的附加相互作用力。外力作用引起构件内部的附加相互作用力。求内力的方法求内力的方法 截面法截面法目录目录1.4 1.4 内力、截面法和应力的概念内力、截面法和应力的概念(1)(1)假想沿假想沿m-mm-m横截面将横截面将 杆杆切开切开(2)(2)留下留下左半段或右半段左半段或右半段(3)(3)将弃去部分对留下部将弃去部分对留下部 分的作用用内力分的作用用内力代替代替(4)(4)对留下部分写对留下部分写平衡平衡方方 程,求出内力的值。程,求出内力的值。F FS SM MF F F FF F F Faa目录目录1.4 1.4 内力、截面法和应力的概念内力、截面法和应力的概念例如例如例例 1.11.1 钻床钻床求:求:截面截面m-mm-m上的内力。上的内力。用截面用截面m-mm-m将钻床截为两部分,取上半部将钻床截为两部分,取上半部分为研究对象,分为研究对象,解:解:受力如图:受力如图:1.4 1.4 内力、截面法和应力的概念内力、截面法和应力的概念列平衡方程列平衡方程:目录目录F FN NM M目录目录1.4 1.4 内力、截面法和应力的概念内力、截面法和应力的概念为了表示内力在一点处的强度,引入为了表示内力在一点处的强度,引入内力内力集度集度,即即应力应力的概念。的概念。平均应力平均应力 C C点的应力点的应力应力是矢量,应力是矢量,通常分解为通常分解为 正应力正应力 切应力切应力应力的国际单位为应力的国际单位为 PaPa(帕斯卡)(帕斯卡)1Pa=1N/m1Pa=1N/m2 21kPa=101kPa=103 3N/mN/m2 21MPa=101MPa=106 6N/mN/m2 21GPa=101GPa=109 9N/mN/m2 21.5 1.5 变形与应变变形与应变1.1.位移位移刚性位移;刚性位移;MMMM变形位移。变形位移。2.2.变形变形物体内任意两点的相对物体内任意两点的相对位置位置发生变化。发生变化。取一微正六面体取一微正六面体两种基本变形:两种基本变形:线变形线变形 线段长度的变化线段长度的变化DxDx+DsxyogMMLNLN角变形角变形 线段间夹角的变化线段间夹角的变化目录目录3.3.应变应变x x方向的平均应变:方向的平均应变:正应变(线应变)正应变(线应变)1.5 1.5 变形与应变变形与应变DxDx+DsxyogMMLNLNM M点处沿点处沿x x方向的应变:方向的应变:切应变(角应变)切应变(角应变)类似地,可以定义类似地,可以定义M M点在点在xyxy平面内的平面内的切应变为:切应变为:均为无量纲的量。均为无量纲的量。目录目录1.5 1.5 变形与应变变形与应变例例 1.21.2已知:已知:薄板的两条边薄板的两条边固定,变形后固定,变形后ab,ad仍为直线。仍为直线。解:解:250200adcba0.025gab,ad 两边夹角的变化:两边夹角的变化:即为切应变即为切应变 。目录目录求:求:ab 边的边的m 和和 ab、ad 两边夹两边夹角的变化角的变化。拉压变形拉压变形拉伸(压缩)、剪切、扭转、弯曲拉伸(压缩)、剪切、扭转、弯曲剪切变形剪切变形杆件的基本变形:杆件的基本变形:目录目录1.61.6 杆件变形的基本形式杆件变形的基本形式扭转变形扭转变形弯曲变形弯曲变形目录目录1.61.6 杆件变形的基本形式杆件变形的基本形式第二章第二章 拉伸、压缩与剪切拉伸、压缩与剪切(1)(1)目目 录录第二章第二章 拉伸、压缩与剪切拉伸、压缩与剪切目目 录录2.12.1 轴向拉伸与压缩的概念和实例轴向拉伸与压缩的概念和实例2.22.2 轴向拉伸或压缩时横截面上的内轴向拉伸或压缩时横截面上的内力和应力力和应力2.32.3 直杆轴向拉伸或压缩时斜截面上的应力直杆轴向拉伸或压缩时斜截面上的应力2.42.4 材料拉伸时的力学性能材料拉伸时的力学性能2.52.5 材料压缩时的力学性能材料压缩时的力学性能2.72.7 失效、安全因数和强度计算失效、安全因数和强度计算2.82.8 轴向拉伸或压缩时的变形轴向拉伸或压缩时的变形2.92.9 轴向拉伸或压缩的应变能轴向拉伸或压缩的应变能2.102.10 拉伸、压缩超静定问题拉伸、压缩超静定问题2.112.11 温度应力和装配应力温度应力和装配应力2.122.12 应力集中的概念应力集中的概念2.13 2.13 剪切和挤压的实用计算剪切和挤压的实用计算2.1 2.1 轴向拉伸与压缩的概念和实例轴向拉伸与压缩的概念和实例目目 录录2.1 2.1 轴向拉伸与压缩的概念和实例轴向拉伸与压缩的概念和实例目目 录录 作用在杆件上的外力合力的作用线与杆作用在杆件上的外力合力的作用线与杆件轴线重合,杆件变形是沿轴线方向的伸长件轴线重合,杆件变形是沿轴线方向的伸长或缩短。或缩短。拉(压)杆的受力简图拉(压)杆的受力简图F FF F拉伸拉伸F FF F压缩压缩2.1 2.1 轴向拉伸与压缩的概念和实例轴向拉伸与压缩的概念和实例目目 录录受力受力特点与变形特点:特点与变形特点:2.1 2.1 轴向拉伸与压缩的概念和实例轴向拉伸与压缩的概念和实例目目 录录2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力 1 1、截面法求内力、截面法求内力F FF Fm mm mF FF FN NF FF FN N目目 录录(1)(1)假想沿假想沿m-mm-m横截面将横截面将 杆杆切开切开(2)(2)留下左半段或右半段留下左半段或右半段(3)(3)将弃去部分对留下部分将弃去部分对留下部分 的作用用内力代替的作用用内力代替(4)(4)对留下部分写平衡方程对留下部分写平衡方程 求出内力即轴力的值求出内力即轴力的值2.2 2.2 轴向拉伸或压缩时横截面上的内轴向拉伸或压缩时横截面上的内力和应力力和应力2 2、轴力:截面上的内力、轴力:截面上的内力F FF Fm mm mF FF FN NF FF FN N目目 录录 由于外力的作用线由于外力的作用线与杆件的轴线重合,内与杆件的轴线重合,内力的作用线也与杆件的力的作用线也与杆件的轴线重合。所以称为轴轴线重合。所以称为轴力。力。3 3、轴力正负号:、轴力正负号:拉为正、压为负拉为正、压为负4 4、轴力图:轴力沿、轴力图:轴力沿杆杆 件轴线的变化件轴线的变化2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力已知已知F F1 1=10kN=10kN;F F2 2=20kN=20kN;F F3 3=35kN=35kN;F F4 4=25kN;=25kN;试画试画出图示杆件的轴力图。出图示杆件的轴力图。11例题例题2.12.1FN1F1解:解:1 1、计算各段的轴力。、计算各段的轴力。F1F3F2F4ABCD2233FN3F4FN2F1F2ABAB段段BCBC段段CDCD段段2 2、绘制轴力图。、绘制轴力图。目目 录录2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力目目 录录2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力 杆件的强度不仅与轴力有关,还与横截面面杆件的强度不仅与轴力有关,还与横截面面积有关。必须用应力来比较和判断杆件的强度。积有关。必须用应力来比较和判断杆件的强度。目目 录录 在拉(压)杆的在拉(压)杆的横截面上,横截面上,与轴与轴力力F FN N对应的应力是正应力对应的应力是正应力 。根据连续根据连续性假设,横截面上到处都存在着内力。性假设,横截面上到处都存在着内力。于是得静力关系:于是得静力关系:2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力目目 录录 平面假设平面假设变形前原为平面的横截面,变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线。变形后仍保持为平面且仍垂直于轴线。横向线横向线ab、cd仍为直线,且仍为直线,且仍垂直于杆轴仍垂直于杆轴线,只是分别线,只是分别平行移至平行移至ab、cd。观察变形:观察变形:2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力目目 录录从平面假设可以判断:从平面假设可以判断:(1)所有纵向纤维伸长相等)所有纵向纤维伸长相等(2)因材料均匀,故各纤维受力相等)因材料均匀,故各纤维受力相等(3)内力均匀分布,各点正应力相等,为常量)内力均匀分布,各点正应力相等,为常量 2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力 该式为横截面上的正应力该式为横截面上的正应力计计算公式。正应力算公式。正应力和轴力和轴力F FN N同号。同号。即拉应力为正,压应力为负。即拉应力为正,压应力为负。圣圣维维南南原原理理目目 录录2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力目目 录录2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力例题例题2.22.2 图示结构,试求杆件图示结构,试求杆件ABAB、CBCB的的应力。已知应力。已知 F F=20kN=20kN;斜杆;斜杆ABAB为直为直径径20mm20mm的圆截面杆,水平杆的圆截面杆,水平杆CBCB为为15151515的方截面杆。的方截面杆。F FA AB BC C解:解:1 1、计算各杆件的轴力。、计算各杆件的轴力。(设斜杆为(设斜杆为1 1杆,水平杆为杆,水平杆为2 2杆)杆)用截面法取节点用截面法取节点B B为研究对象为研究对象45451 12 2F FB BF F4545目目 录录2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力2 2、计算各杆件的应力。、计算各杆件的应力。F FA AB BC C45451 12 2F FB BF F4545目目 录录2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力例题例题2.22.2 悬臂吊车的斜杆悬臂吊车的斜杆ABAB为直径为直径d=20mmd=20mm的钢杆,载荷的钢杆,载荷W=15kNW=15kN。当。当W W移到移到A A点时,求斜杆点时,求斜杆ABAB横截面上的横截面上的应力。应力。解:解:当载荷当载荷W移到移到A点时,点时,斜杆斜杆ABAB受到拉力最大,设其值为受到拉力最大,设其值为F Fmaxmax。讨论横梁平衡讨论横梁平衡目目 录录0.8mABC1.9mdCA2.2 2.2 轴向拉伸或压缩时横截面上的内力和应力轴向拉伸或压缩时横截面上的内力和应力由三角形由三角形ABCABC求出求出斜杆斜杆ABAB的轴力为的轴力为斜杆斜杆ABAB横截面上的应力为横截面上的应力为目目 录录0.8mABC1.9mdCA2.3 2.3 直杆轴向拉伸或压缩时斜截面上的应力直杆轴向拉伸或压缩时斜截面上的应力 实验表明:拉(压)杆的破坏并不总是沿实验表明:拉(压)杆的破坏并不总是沿横截面发生,有时却是沿斜截面发生的。横截面发生,有时却是沿斜截面发生的。目目 录录 2.4 2.4 材料拉伸时的力学性能材料拉伸时的力学性能 力学性能:在外力作用下材料在变形和破坏方力学性能:在外力作用下材料在变形和破坏方面所表现出的力学特性。面所表现出的力学特性。一一 试试件件和和实实验验条条件件常常温温、静静载载目目 录录2.4 2.4 材料拉伸时的力学性能材料拉伸时的力学性能目目 录录2.4 2.4 材料拉伸时的力学性能材料拉伸时的力学性能二二 低低碳碳钢钢的的拉拉伸伸目目 录录2.4 2.4 材料拉伸时的力学性能材料拉伸时的力学性能明显的四个阶段明显的四个阶段1 1、弹性阶段、弹性阶段obob比例极限比例极限弹性极限弹性极限2 2、屈服阶段、屈服阶段bcbc(失去抵(失去抵抗变形的能力)抗变形的能力)屈服极限屈服极限3 3、强化阶段、强化阶段cece(恢复抵抗(恢复抵抗变形的能力)变形的能力)强度极限强度极限4 4、局部径缩阶段、局部径缩阶段efef目目 录录胡克定律胡克定律E弹性模量(弹性模量(GN/m2)2.4 2.4 材料拉伸时的力学性能材料拉伸时的力学性能两个塑性指标两个塑性指标:断后伸长率断后伸长率断面收缩率断面收缩率为塑性材料为塑性材料为脆性材料为脆性材料低碳钢的低碳钢的为塑性材料为塑性材料目目 录录2.4 2.4 材料拉伸时的力学性能材料拉伸时的力学性能三三 卸载定律及冷作硬化卸载定律及冷作硬化1 1、弹性范围内卸载、再加载、弹性范围内卸载、再加载2 2、过弹性范围卸载、再加载、过弹性范围卸载、再加载 材料在卸载过程中应材料在卸载过程中应力和应变是线性关系,这力和应变是线性关系,这就是就是卸载定律卸载定律。材料的比例极限增高,材料的比例极限增高,延伸率降低,称之为延伸率降低,称之为冷作硬冷作硬化或加工硬化化或加工硬化。目目 录录2.4 2.4 材料拉伸时的力学性能材料拉伸时的力学性能四四 其其它它材材料料拉拉伸伸时时的的力力学学性性质质 对于没有明对于没有明显屈服阶段的塑显屈服阶段的塑性材料,用名义性材料,用名义屈服极限屈服极限p0.2p0.2来来表示。表示。目目 录录2.4 2.4 材料拉伸时的力学性能材料拉伸时的力学性能 对于脆性材料(铸铁),拉伸时的应力对于脆性材料(铸铁),拉伸时的应力应变曲线为微弯的曲线,没有屈服和径缩现应变曲线为微弯的曲线,没有屈服和径缩现象,试件突然拉断。断后伸长率约为象,试件突然拉断。断后伸长率约为0.5%0.5%。为典型的脆性材料。为典型的脆性材料。btbt拉伸强度极限(约为拉伸强度极限(约为140MPa140MPa)。它是)。它是衡量脆性材料(铸铁)拉伸的唯一强度指标。衡量脆性材料(铸铁)拉伸的唯一强度指标。目目 录录第二章第二章 拉伸、压缩与剪切拉伸、压缩与剪切(2)(2)目目 录录2.5 2.5 材料压缩时的力学性能材料压缩时的力学性能一一 试试件件和和实实验验条条件件常常温温、静静载载目目 录录2.5 2.5 材料压缩时的力学性能材料压缩时的力学性能二二 塑塑性性材材料料(低低碳碳钢钢)的的压压缩缩 拉伸与压缩在屈服拉伸与压缩在屈服阶段以前完全相同。阶段以前完全相同。屈服极限屈服极限比例极限比例极限弹性极限弹性极限E E-弹性摸量弹性摸量目目 录录2.5 2.5 材料压缩时的力学性能材料压缩时的力学性能三三 脆脆性性材材料料(铸铸铁铁)的的压压缩缩 脆性材料的抗拉与抗压脆性材料的抗拉与抗压性质不完全相同性质不完全相同 压缩时的强度极限远大压缩时的强度极限远大于拉伸时的强度极限于拉伸时的强度极限目目 录录目目 录录2.5 2.5 材料压缩时的力学性能材料压缩时的力学性能2.7 2.7 失效、安全因数和强度计算失效、安全因数和强度计算一一 、安全因数和许用应力、安全因数和许用应力工作应力工作应力极限应力极限应力塑性材料塑性材料脆性材料脆性材料塑性材料的许用应力塑性材料的许用应力脆性材料的许用应力脆性材料的许用应力目目 录录 n n 安全因数安全因数 许用应力许用应力2.7 2.7 失效、安全因数和强度计算失效、安全因数和强度计算二二 、强度条件、强度条件根据强度条件,可以解决三类强度计算问题根据强度条件,可以解决三类强度计算问题1 1、强度校核:、强度校核:2 2、设计截面:、设计截面:3 3、确定许可载荷:、确定许可载荷:目目 录录2.7 2.7 失效、安全因数和强度计算失效、安全因数和强度计算例题例题2.42.4油缸盖与缸体采用油缸盖与缸体采用6 6个螺栓连接。已知油缸内径个螺栓连接。已知油缸内径D=350mmD=350mm,油压,油压p=1MPap=1MPa。螺栓许用应力。螺栓许用应力=40MPa=40MPa,求螺栓的内径。求螺栓的内径。每个螺栓承受轴力为总压力的每个螺栓承受轴力为总压力的1/61/6解:解:油缸盖受到的力油缸盖受到的力根据强度条件根据强度条件即螺栓的轴力为即螺栓的轴力为得得即即螺栓的直径为螺栓的直径为目目 录录2.7 2.7 失效、安全因数和强度计算失效、安全因数和强度计算例题例题2.52.5 ACAC为为505050505 5的等边角钢,的等边角钢,ABAB为为1010号号槽钢,槽钢,=120MPa=120MPa。确定许可载荷。确定许可载荷F F。解:解:1 1、计算轴力(设斜杆为、计算轴力(设斜杆为1 1杆,水平杆为杆,水平杆为2 2杆)用截面法取节点杆)用截面法取节点A A为研究对象为研究对象2 2、根据斜杆的强度,求许可载荷、根据斜杆的强度,求许可载荷A AF F查表得斜杆查表得斜杆ACAC的面积为的面积为A A1 1=2=24.8cm4.8cm2 2目目 录录2.7 2.7 失效、安全因数和强度计算失效、安全因数和强度计算3 3、根据水平杆的强度,求许可载荷、根据水平杆的强度,求许可载荷A AF F查表得水平杆查表得水平杆ABAB的面积为的面积为A A2 2=2=212.74cm12.74cm2 24 4、许可载荷、许可载荷目目 录录2.8 2.8 轴向拉伸或压缩时的变形轴向拉伸或压缩时的变形一一 纵向变形纵向变形二二 横向变形横向变形钢材的钢材的E E约为约为200GPa200GPa,约为约为0.250.250.330.33EAEA为抗拉刚度为抗拉刚度泊松比泊松比横向应变横向应变目目 录录 2.8 2.8 轴向拉伸或压缩时的变形轴向拉伸或压缩时的变形目目 录录2.8 2.8 轴向拉伸或压缩时的变形轴向拉伸或压缩时的变形目目 录录 对于变截面杆件(如阶梯对于变截面杆件(如阶梯杆),或轴力变化。则杆),或轴力变化。则例题例题2.62.6 ABAB长长2m,2m,面积为面积为200mm200mm2 2。ACAC面积为面积为250mm250mm2 2。E E=200GPa=200GPa。F F=10kN=10kN。试求节点。试求节点A A的位移。的位移。解:解:1 1、计算轴力。(设斜杆为、计算轴力。(设斜杆为1 1杆,水杆,水平杆为平杆为2 2杆)取节点杆)取节点A A为研究对象为研究对象2 2、根据胡克定律计算杆的变形。、根据胡克定律计算杆的变形。A AF F30300 02.8 2.8 轴向拉伸或压缩时的变形轴向拉伸或压缩时的变形斜杆伸长斜杆伸长水平杆缩短水平杆缩短目目 录录3 3、节点、节点A A的位移(以切代弧)的位移(以切代弧)2.8 2.8 轴向拉伸或压缩时的变形轴向拉伸或压缩时的变形A AF F30300 0目目 录录2.9 2.9 轴向拉伸或压缩的应变能轴向拉伸或压缩的应变能在在 范围内范围内,有有应变能(应变能():固体在外力作用下,因变形而储):固体在外力作用下,因变形而储 存的能量称为应变能。存的能量称为应变能。目目 录录1lD2.10 2.10 拉伸、压缩超静定问题拉伸、压缩超静定问题 约束反力约束反力(轴力)可由(轴力)可由静力平衡方程静力平衡方程求得求得静定结构:静定结构:目目 录录2.10 2.10 拉伸、压缩超静定问题拉伸、压缩超静定问题 约束反力不能约束反力不能由平衡方程求得由平衡方程求得超静定结构:结构的强度和刚度均得到提高超静定结构:结构的强度和刚度均得到提高超静定度(次)数:超静定度(次)数:约束反力多于约束反力多于独立平衡方程的数独立平衡方程的数独立平衡方程数:独立平衡方程数:平面任意力系:平面任意力系:3 3个平衡方程个平衡方程平面共点力系:平面共点力系:2 2个平衡方程个平衡方程目目 录录2.10 2.10 拉伸、压缩超静定问题拉伸、压缩超静定问题1 1、列出独立的平衡方程、列出独立的平衡方程超静定结构的求解方法:超静定结构的求解方法:2 2、变形几何关系、变形几何关系3 3、物理关系、物理关系4 4、补充方程、补充方程5 5、求解方程组,得、求解方程组,得例题例题2.72.7目目 录录图示结构,图示结构,1、2杆抗拉刚度为杆抗拉刚度为E1A1,3杆抗拉刚杆抗拉刚度为度为E3A3,在外力,在外力F 作用下,求三杆轴力?作用下,求三杆轴力?2.10 2.10 拉伸、压缩超静定问题拉伸、压缩超静定问题例题例题2.82.8目目 录录 在图示结构中,设横梁在图示结构中,设横梁AB的的变形可以省略,变形可以省略,1,2两杆的横截两杆的横截面面积相等,材料相同。试求面面积相等,材料相同。试求1,2两杆的内力。两杆的内力。1 1、列出独立的平衡方程、列出独立的平衡方程解:解:2 2、变形几何关系、变形几何关系3 3、物理关系、物理关系4 4、补充方程、补充方程5 5、求解方程组得、求解方程组得2.11 2.11 温度应力和装配应力温度应力和装配应力一、温度应力一、温度应力已知:已知:材料的线胀系数材料的线胀系数温度变化(升高)温度变化(升高)1、杆件的温度变形(伸长)、杆件的温度变形(伸长)2、杆端作用产生的缩短、杆端作用产生的缩短3、变形条件、变形条件4、求解未知力、求解未知力即即温度应力为温度应力为目目 录录2.11 2.11 温度应力和装配应力温度应力和装配应力二、装配应力二、装配应力已知:已知:加工误差为加工误差为求:各杆内力。求:各杆内力。1 1、列平衡方程、列平衡方程2 2、变形协调条件、变形协调条件3 3、将物理关系代入、将物理关系代入解得解得因因目目 录录2.12 2.12 应力集中的概念应力集中的概念 常见的油孔、沟槽常见的油孔、沟槽等均有构件尺寸突变,等均有构件尺寸突变,突变处将产生应力集中突变处将产生应力集中现象。即现象。即理论应力理论应力集中因数集中因数1 1、形状尺寸的影响:、形状尺寸的影响:2 2、材料的影响:、材料的影响:应力集中对塑性材料的影响应力集中对塑性材料的影响不大;不大;应力集中对脆性材料的影应力集中对脆性材料的影响严重,应特别注意。响严重,应特别注意。目目 录录 尺寸变化越急剧、角尺寸变化越急剧、角越尖、孔越小,应力集中越尖、孔越小,应力集中的程度越严重。的程度越严重。
展开阅读全文
相关资源
正为您匹配相似的精品文档
相关搜索

最新文档


当前位置:首页 > 图纸专区 > 课件教案


copyright@ 2023-2025  zhuangpeitu.com 装配图网版权所有   联系电话:18123376007

备案号:ICP2024067431-1 川公网安备51140202000466号


本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!