资源描述
南京中医药大学护理学院杜世正杜世正 南京中医药大学护理学院南京中医药大学护理学院 Email:护理科研中常用的护理科研中常用的统计学方法统计学方法1南京中医药大学护理学院 医学论文中统计学问题医学论文中统计学问题n20世纪60年代到80年代,国外医学杂志调查结果:有统计错误的论文20%72%。n对2005年国内5种护理期刊2844篇论文调查显示,未进行统计处理的1703篇文章有29篇应该进行统计学分析,在有统计学处理的1141篇文章中,有统计学缺陷的占27.8%。-杨海清.5种护理杂志文献中统计方法的应用现况分析J.中国医院统计,2005,12(2):124-127.2南京中医药大学护理学院“非常痛心地看到,因为数据分析的缺陷和错误,那么多好的生物研究工作面临着被葬送的危险。”-F.Yates,M.J.R.Healy3南京中医药大学护理学院应用举例:应用举例:n欲比较中国和日本青少年身高,随机抽样1000名青少年,比较其平均身高两独立样本两独立样本t检验或单因素检验或单因素F检验检验4南京中医药大学护理学院应用举例:应用举例:n一项研究探讨太极拳锻炼对于高血压患者干预效果,纳入研究对象200人,在干预3个月后,比较血压的变化情况配对配对t检验检验5南京中医药大学护理学院应用举例:应用举例:n一项研究太极拳锻炼对于高血压患者干预效果的预实预实验验,纳入研究对象20人,在干预3个月后,比较血压的变化情况配对样本比较配对样本比较Wilcoxon秩检验秩检验6南京中医药大学护理学院应用举例:应用举例:n一项研究太极拳锻炼对于高血压患者干预效果的临床临床试验试验,纳入研究对象400人,完成随机化分组和基线值测量,试验组204人,对照组196人,在干预3个月后,比较干预后血压情况。两独立样本两独立样本t检验或单因素检验或单因素F检验检验7南京中医药大学护理学院应用举例:应用举例:n一项研究太极拳锻炼对于高血压患者干预效果的临床临床试验试验,纳入研究对象400人,完成基线信息测量和随机化分组,试验组204人,对照组196人,干预3个月,比较患者在基线值、3个月、6个月、9个月和12个月时血压的变化情况。重复测量方差分析重复测量方差分析8南京中医药大学护理学院应用举例:应用举例:n某医师欲比较物理疗法和药物疗法治疗周围性面神经麻痹的疗效,资料见下表,问两种疗法的有效率有误差别?组别 有效 无效合计有效率(%)物理疗法 99 5 104 95.20药物疗法 75 21 96 78.13合计 174 26 200 87.00卡方检验卡方检验9南京中医药大学护理学院应用举例:应用举例:n某医师欲比较物理疗法和药物疗法治疗周围性面神经麻痹的疗效,资料见下表,问两种疗法的有效率有误差别?组 别 治愈显效好转无效 物理疗法20222523 药物疗法17212726合 计37334249等级资料秩和检验等级资料秩和检验10南京中医药大学护理学院(1)计量资料计量资料(quantitative data)变量值有度量衡单位,表现为数值大小,如年龄,身 高,体重,疼痛强度(VAS)等。(2)计数资料计数资料(qualitative data)将观察单位按某种属性进行分组,分组汇总各组观察单 位数。如:性别,职业,血型等(3)等级资料等级资料(ranked data,ordinal data)将观察单位按某种属性的不同程度分成等级后分组计数,变量值具有半定量性质,如疗效等级,癌症分期,Likert 式分级等资料的分类资料的分类11南京中医药大学护理学院n统计描述n统计推断12南京中医药大学护理学院n统计描述统计描述n统计推断13南京中医药大学护理学院统计描述基本方法n计量资料集中趋势:算数均数、几何均数、中位数离散趋势:极差、四分位距、方差和标准差、变异系数百分位数:偏态资料n计数资料率构成比相对比:OR,RR动态数列:增长量、发展速度14南京中医药大学护理学院n统计描述统计描述n统计推断15南京中医药大学护理学院 统计推断基本方法n参数估计l计量资料:t检验,方差分析l计数资料:卡方检验n非参数估计(秩和)检验l配对,两独立样本,多独立样本,随机区组n相关和回归l相关:Pearson 相关:双变量均呈正态分布 Spearman 相关:双变量不呈正态分布l回归:线性回归:因变量为计量资料 Logistic 回归:因变量为二分类变量(阳性、阴性)Ordinal 有序回归:因变量为等级资料16南京中医药大学护理学院 统计推断基本方法n参数估计l计量资料:t检验,方差分析l计数资料:卡方检验n非参数估计(秩和)检验l配对,两独立样本,多独立样本,随机区组n相关和回归l相关:Pearson 相关:双变量均呈正态分布 Spearman 相关:双变量不呈正态分布l回归:线性回归:因变量为计量资料 Logistic 回归:因变量为二分类变量 Ordinal 有序回归:因变量为等级资料17南京中医药大学护理学院n t 检验参数检验:计量资料参数检验:计量资料l单样本t检验l配对样本t检验:每对数值差总体为正态分布l两独立样本t检验:方差齐性(两正态总体,总体 方差相等)18南京中医药大学护理学院n t 检验l单样本t检验l配对样本t检验:每对数值差总体为正态分布l两独立样本t检验:方差齐性(两正态总体,总体 方差相等)参数检验:计量资料参数检验:计量资料19南京中医药大学护理学院n t 检验l单样本t检验 已知样本均数与已知总体均数的比较。例:某社区随机抽样老年居民100人,分别测量其血压值(收缩压和舒张压),请问该社区老年居民收缩压与140mmHg是否有差别?参数检验:计量资料参数检验:计量资料20南京中医药大学护理学院n t 检验l单样本t检验l配对样本t检验:每对数值差总体为正态分布每对数值差总体为正态分布l两独立样本t检验:方差齐性(两正态总体,总体 方差相等)参数检验:计量资料参数检验:计量资料21南京中医药大学护理学院n t 检验l 配对样本t检验配对设计适用情形:自身比较,指同一受试对象处理前后的比较(处理前 后其他非处理因素保持齐同性),若重复测量(3次),则采用重复测量方差分析。同一样本(比如血样)分成两半,用两种不同方法测定将月龄、体重、性别相同的纯系实验动物组成配伍组,随机分成两组参数检验:计量资料参数检验:计量资料22南京中医药大学护理学院n t 检验l 配对样本t检验 数据要求:每对数据的差值差值符合正态分布符合正态分布参数检验:计量资料参数检验:计量资料23南京中医药大学护理学院编号编号beforebeforeafterafter差值差值d d1156145-11215616044145143-24167160-7513515015614514727134127-78160156-49157145-1210156157111139135-41214615610131461482141351572215145145016147145-217157145-1218156150-619149145-420143142-124南京中医药大学护理学院25南京中医药大学护理学院26南京中医药大学护理学院配对t检验要求每对数据的差值符合正态分布差值符合正态分布配对配对t检验检验前提欠妥前提欠妥27南京中医药大学护理学院n t 检验l单样本t检验l配对样本t检验:每对数值差总体为正态分布l两独立样本t检验:方差齐性(两正态总体,总体 方差相等)参数检验:计量资料参数检验:计量资料28南京中医药大学护理学院n t 检验l两独立样本t检验:方差齐性(两正态总体,总体 方差相等)适用情形:完全随机设计的两样本均数比较 数据要求:两组数据均呈正态分布参数检验:计量资料参数检验:计量资料29南京中医药大学护理学院n t 检验l两独立样本t检验:方差齐性(两正态总体,总体 方差相等)例:一项研究太极拳锻炼对于高血压患者干预效果的临床试临床试验验,纳入研究对象400人,完成随机化分组和基线值测量,试验组204人,对照组196人,在干预3个月后,比较干预后血压情况。参数检验:计量资料参数检验:计量资料30南京中医药大学护理学院试验组试验组SBPSBP对照组对照组SBPSBP11561145215621604145414341674160513551506145614771347127816081569157914510156101571113911135121461215613146131481413514157151451514516147161451715717145181561815019149191452014320142.31南京中医药大学护理学院配对t检验?两独立样本t检验?两独立样本t检验配对t检验32南京中医药大学护理学院n t 检验l单样本t检验l配对样本t检验:每对数值差总体为正态分布l两独立样本t检验:方差齐性(两正态总体,总体 方差相等)参数检验:计量资料参数检验:计量资料33南京中医药大学护理学院n方差分析 (ANOVA)单因素F检验多因素F检验均要求方差齐性比较某处理因素不同水平的样本之间的差别是否比较某处理因素不同水平的样本之间的差别是否具有统计学意义。具有统计学意义。参数检验:计量资料参数检验:计量资料34南京中医药大学护理学院n单因素F检验单因素单因素F检验检验多个样本均数间多重比较多个样本均数间多重比较实验中的处理因素只有一个,这个处理因素包括g(g2)个水平,分析不同水平实验结果的差别是否有统计学意义。当g=2时,单因素方差分析和两独立样本t检验效能是等价的。参数检验:计量资料参数检验:计量资料35南京中医药大学护理学院 三组战士行军后体温增加数三组战士行军后体温增加数()不饮水不饮水定量饮水定量饮水 不限量饮水不限量饮水1.9 1.4 0.9 1.8 1.2 0.7 1.6 1.1 0.9 1.7 1.4 1.1 1.5 1.1 0.9 1.6 1.3 0.9 1.3 1.1 0.8 1.4 1.0 1.0 1.6 1.2 0.9处理因素处理因素:饮水方式饮水方式 水平数水平数=3能用能用t检检验吗?验吗?36南京中医药大学护理学院37南京中医药大学护理学院n单因素F检验单因素单因素F检验检验多个样本均数间多重比较多个样本均数间多重比较实验中的处理因素只有一个,这个处理因素包括g(g2)个水平,分析不同水平实验结果的差别是否有统计学意义。当g3时,多重比较多采用LSD-t检验,Dunnett-t检验和SNK-q检验(两两之间的全面比较)。参数检验:计量资料参数检验:计量资料38南京中医药大学护理学院39南京中医药大学护理学院40南京中医药大学护理学院n单因素F检验单因素单因素F检验检验随机区组设计的方差分析随机区组设计的方差分析先按影响实验结果的非处理因素(如性别、体重、年龄、职业、病情、病程等)将受试对象配成区组,再分别将区组内的受试对象随机分配到各处理组或对照组。参数检验:计量资料参数检验:计量资料41南京中医药大学护理学院42南京中医药大学护理学院A=术前晚清洁、剃毛B=术前2h清洁、剃毛C=术前晚清洁、不剃毛D=术前2h清洁、不剃毛43南京中医药大学护理学院44南京中医药大学护理学院应用举例:应用举例:n一项研究太极拳锻炼对于高血压患者干预效果的临床临床试验试验,纳入研究对象400人,完成基线信息测量和随机化分组,试验组204人,对照组196人,干预3个月,比较患者在基线值、3个月、6个月、9个月和12个月时血压的变化情况。重复测量方差分析重复测量方差分析45南京中医药大学护理学院重复测量设计重复测量设计重复测量设计重复测量设计(单因素单因素单因素单因素)各组数据间各组数据间独立吗?独立吗?46南京中医药大学护理学院相关系数相关系数47南京中医药大学护理学院48南京中医药大学护理学院49南京中医药大学护理学院50南京中医药大学护理学院51南京中医药大学护理学院52南京中医药大学护理学院n原文题目:牛黄千金散的抗炎解热作用原文题目:牛黄千金散的抗炎解热作用n原原文文设设计计:将将Wistar大大鼠鼠随随机机分分为为3组组:生生理理盐盐水水组组,地地塞塞米米松松组组,牛牛黄黄千千金金散散组组。药药前前测测定定大大鼠鼠的的足足跖跖容容积积,然然后后分分别别灌灌胃胃给给药药,30min后后足足皮皮下下注注射射新新鲜鲜鸡鸡蛋蛋清清。用用药药后后15、30、45、60、75min以以同同样样的的方方法法测测左左侧侧足足跖跖容容积积。数数据据采采用用t检检验验的的统统计计学学分分析析方方法法处理,资料见下表处理,资料见下表1。摘自徐庆荣等发表于中国临床药理学与治疗学杂志,1999,4(3):218-219。53南京中医药大学护理学院n行 列 表X2 检验(四格表)n配对X2检验参数检验:计数资料参数检验:计数资料54南京中医药大学护理学院n行 列 表X2 检验(四格表)n配对X2检验参数检验:计数资料参数检验:计数资料55南京中医药大学护理学院 表 两组方式治疗压疮有效率的比较组别组别 有效有效 无效无效合计合计有效率有效率(%)(%)A A方式方式 9999 2020 119119 83.283.2B B方式方式 7575 1717 9292 81.581.5合计合计 174174 37 37 211211 82.582.556南京中医药大学护理学院根据统计学理论研究发现,四格表资料在下面的根据统计学理论研究发现,四格表资料在下面的情况下,用前面公式计算得到的情况下,用前面公式计算得到的X2值比分布的值比分布的X2 值大,因而需对该值进行校正。值大,因而需对该值进行校正。1.T51.T5且且N40,N40,用四格表专用公式;用四格表专用公式;2.2.11T T55且且N N 4040时,需用校正公式计算时,需用校正公式计算X2值;值;3.3.T T1 1或或N N4040时,需用精确概率法计算时,需用精确概率法计算P P值。值。校正问题57南京中医药大学护理学院专用公式校正公式确切概率法58南京中医药大学护理学院59南京中医药大学护理学院多组间两两比较:分割比较多组间两两比较:分割比较=/NN=n(n-1)/2n=组数60南京中医药大学护理学院61南京中医药大学护理学院配对四格表资料的X2检验 例 有26份咽喉涂抹标本,把每份标本分成两份,依同样的条件分别接种在A和B两种白喉杆菌培养基上,观察白喉的生长情况,其结果如下表所示。编号编号A A培养基培养基B B培养基培养基1 1+-2 2-+3 3+-4 4+5 5-6 6+7 7-8 8+9 9-+26+-62南京中医药大学护理学院 表 两组方法检测结果 A A 培养基培养基B B 培养基培养基 合计合计+-+10(a)10(a)1(b)1(b)1111-9(c)9(c)6(d)6(d)1515合计合计 1919 7 7 262663南京中医药大学护理学院n行 列 表X2 检验(四格表)n配对X2检验l把一份标本分为两份,分别用两种方法化验,比较两种方法的结果(两类计数资料)是否相同?l分别采用甲、乙两种方法对同一批患者进行检查,比较此两种检查方法(两类计数资料)是否相同?参数检验:计数资料参数检验:计数资料64南京中医药大学护理学院 统计推断基本方法n参数估计l计量资料:t检验,方差分析l计数资料:卡方检验n非参数估计(秩和)检验l配对,两独立样本,多独立样本,随机区组n相关和回归l相关:Pearson 相关:双变量均呈正态分布 Spearman 相关:双变量不呈正态分布l回归:线性回归:因变量为计量资料 Logistic 回归:因变量为二分类变量(阳性、阴性)Ordinal 有序回归:因变量为等级资料65南京中医药大学护理学院n秩和检验:秩和检验:小样本资料(不满足正态分布和方 差齐性,如 Sd );等级资料等级资料 适用条件:适用条件:l 计量资料不满足正态分布和方差齐性l 小样本资料l 一端或两端是不确定数值(0.5)l 等级资料非参数检验非参数检验66南京中医药大学护理学院Sd不适合用参数检验67南京中医药大学护理学院n秩和检验:秩和检验:小样本资料(不满足正态分布和方 差齐性,如 Sd );等级资料等级资料 配对样本比较的Wilcoxon符号秩检验 两独立样本比较的Wilcoxon符号秩检验 多个独立样本比较的Kruskal-Wallis H检验非参数检验非参数检验68南京中医药大学护理学院n秩和检验:秩和检验:配对样本比较的Wilcoxon符号秩检验自身比较,指同一受试对象处理前后的比较(处理前后其他非处理因素保持齐同性)同一样本(比如血样)分成两半,用两种不同方法测定将月龄、体重、性别相同的纯系实验动物组成配伍组,随机分成两组非参数检验非参数检验69南京中医药大学护理学院编号编号beforebeforeafterafter差值差值d d1156145-11215616044145143-24167160-7513515015614514727134127-78160156-49157145-1210156157111139135-41214615610131461482141351572215145145016147145-217157145-1218156150-619149145-420143142-170南京中医药大学护理学院n 秩和检验:秩和检验:两独立样本比较的Wilcoxon符号秩检验 适用情形:完全随机设计的两样本均数比较 数据要求:两组数据方差不齐非参数检验非参数检验71南京中医药大学护理学院试验组试验组SBPSBP对照组对照组SBPSBP11561145215621604145414341674160513551506145614771347127816081569157914510156101571113911135121461215613146131481413514157151451514516147161451715717145181561815019149191452014372南京中医药大学护理学院n秩和检验:秩和检验:两独立样本比较的Wilcoxon符号秩检验 等级资料秩和检验:非参数检验非参数检验73南京中医药大学护理学院应用举例:应用举例:n某医师欲比较物理疗法和药物疗法治疗周围性面神经麻痹的疗效,资料见下表,问两种疗法的有效率有误差别?组 别 治愈显效好转无效 物理疗法20222523 药物疗法17212726合 计37334249等级资料秩和检验等级资料秩和检验74南京中医药大学护理学院75南京中医药大学护理学院76南京中医药大学护理学院n等级资料秩和检验注:行列表资料:l指标变量无序:行列表X2 检验l指标变量有序:等级资料秩和检验非参数检验非参数检验77南京中医药大学护理学院指标变量有序:等级资料秩和检验78南京中医药大学护理学院指标变量无序:行列表X2 检验79南京中医药大学护理学院n秩和检验:秩和检验:小样本资料(不满足正态分布和方 差齐性,如 Sd );等级资料等级资料 配对样本比较的Wilcoxon符号秩检验 两独立样本比较的Wilcoxon符号秩检验 多个独立样本比较的Kruskal-Wallis H检验非参数检验非参数检验80南京中医药大学护理学院n秩和检验:秩和检验:多个独立样本比较的Kruskal-Wallis H检验计量资料计量资料相关统计学方法相关统计学方法81南京中医药大学护理学院82南京中医药大学护理学院多个独立样本两两比较的Nemenyi法83南京中医药大学护理学院 统计推断基本方法n参数估计l计量资料:t检验,方差分析l计数资料:卡方检验n非参数估计(秩和)检验l配对,两独立样本,多独立样本,随机区组n相关和回归l相关:Pearson 相关:双变量均呈正态分布 Spearman 相关:双变量不呈正态分布l回归:线性回归:因变量为计量资料 Logistic 回归:因变量为二分类变量(阳性、阴性)Ordinal 有序回归:因变量为等级资料84南京中医药大学护理学院 祝大家收获高质量论文!85
展开阅读全文